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Abstract
A graph is beyond-planar if it can be drawn in the plane with a specific restriction on crossings.
Several types of beyond-planar graphs have been investigated, such as k-planar graphs, where every
edge is crossed at most k times, and RAC graphs, where edges can cross only at a right angle in
a straight-line drawing. A graph is optimal if the number of edges coincides with the density for
its type. Optimal graphs are special and are known only for some types of beyond-planar graphs,
including 1-planar, 2-planar, and RAC graphs.

For all types of beyond-planar graphs for which optimal graphs are known, we compute the range
for optimal graphs, establish combinatorial properties, and show that every graph is a topological
minor of an optimal graph. The minor property is well-known for general beyond-planar graphs.
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1 Introduction

Graphs are often defined by particular properties of a drawing. The planar graphs, in which
edge crossings are excluded, are the most prominent example. Every n-vertex planar graph
has at most 3n− 6 edges. The bound is tight for triangulated planar graphs, such that they
are the optimal planar graphs. The planar graphs have been characterized by the forbidden
minors K5 and K3,3 [30]. The minors cannot be a subdivision of a planar graph [41], that
is a topological minor, nor obtained by edge contraction [49]. It is well-known that every
topological minor is a minor, but not conversely, see [30]. In fact, the complete graph K5
cannot be a topological minor of any graph of degree at most three.

There has been a recent interest in beyond-planar graphs [29, 36, 40], which are defined
by drawings with specific restrictions on crossings. These graphs are a natural generalization
of the planar graphs. Their study in graph theory, graph algorithms, graph drawing, and
computational geometry can provide significant insights for the design of effective methods
to visualize real-world networks, that are non-planar, in general.

A graph is k-planar [43] if it has a drawing in the plane such that each edge is crossed
by at most k edges. In particular, it is 1-planar if each edge is crossed at most once [44]. A
1-planar drawing is IC-planar (independent crossing) if every vertex is incident to at most
one crossed edge [6], and NIC-planar (near-independent crossing) if two pairs of crossing
edges share at most one vertex [50]. A drawing is 1-gap planar if there is a gap in at least
one edge that is part of a crossing of two edges and each edge has at most one gap [10]. A
drawing is fan-crossing free [26] if each edge is only crossed by independent edges, i.e., they
have distinct vertices, and fan-crossing [20] if the crossing edges have a common vertex, i.e.,
they form a fan. A fan-crossing drawing is fan-planar if each edge is crossed only from one
side [38, 39]. For 1-fan-bundle graphs [7], edges incident to a vertex are first bundled and
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3:2 On Optimal Beyond-Planar Graphs

a bundle can be crossed at most once by another bundle. An edge can only be bundled at
one of its vertices, that is on one side. At last, a drawing is quasi-planar [4] if three edges
do not cross mutually. These properties are topological. They hold for embeddings, which
are equivalence classes of topologically equivalent drawings. Right angle crossing (RAC) is
a geometric property, in which the edges are drawn straight-line and may cross at a right
angle [28]. A k-bend RAC drawing is a polyline drawing such that every edge is drawn with
at most k bends and there is a right angle at crossings. Particular beyond-planar graphs can
be defined by first order logic formulas [14] and in terms of an avoidance of (natural and
radial) grids [2].

Beyond-planar graphs have been studied with different intensity and depth. In particular,
the density, which is an upper bound on the number of edges of n-vertex graphs, the size
of the largest complete (bipartite) graph [8], and inclusion relations have been investigated
[29, 36]. The linear density is a typical property of beyond-planar graphs, see Table 1. Small
complete graphs Kk with k ≤ 11 distinguish some types, see [8, 21]. Inclusions are canonical,
in general, such that a restriction on drawings implies a proper inclusion for the graph classes
[29]. In particular, every RAC drawing is both fan-crossing free and quasi-planar, and the
RAC graphs are a proper subclass of the fan-crossing free and the quasi-planar graphs,
since the latter admit denser graphs. There are mutual incomparabilities, e.g., between
RAC, fan-crossing and 2-planar graphs [21]. Also RAC graphs are incomparable with each
of 1-planar graphs [32], NIC-planar graphs [9] and k-planar graphs for every fixed k [21].
However, every IC-planar graph is both 1-planar and RAC [22]. Obviously, every 2-planar
graph is 1-gap planar, but not conversely [10], and every fan-planar graph is fan-crossing,
but not conversely, where for every fan-crossing graph there is a fan-planar graph on the
same set of vertices and with the same number of edges [20].

The situation is simpler for optimal graphs. A graph is optimal if its number of edges
meets the established bound on the density of graphs of its type. Hence, the density is tight
for values of n for which there are optimal n-vertex graphs. The term optimal has been
introduced by Bodendiek et al. [12] who have studied optimal 1-planar graphs [13]. At other
places extreme or maximally dense is used.

Optimal graphs are on top of an augmentation of graphs by additional edges, such that
the defining property of the graphs is not violated, that is the type is preserved. Augmented
graphs can often be handled more easily. A drawing of a graph is (planar-maximal) maximal
if no further (uncrossed) edge can be added without violation [5]. A graph G is maximal for
some type τ if G+ e is not a τ -graph for any edge e that is added to G. Note that there are
densest and sparsest graphs, which are maximal graphs with the maximum and minimum
number of edges among all n-vertex graphs in their type [9, 23].

We are aware of optimal graphs for the following types of beyond-planar graphs: 1-planar,
2-planar, IC-planar, NIC-planar, 1-fan-bundle and RAC graphs, see Proposition 1 and
Table 1. There are more types of beyond-planar graphs with a density of 4n− 8 and 5n− 10,
respectively, namely fan-crossing free [26] and grid crossing graphs [14] as well as fan-planar
[38], fan-crossing [20], 1-gap planar [10] and 5-map graphs [18], where 5-map graphs are
simultaneously 2-planar and fan-crossing (see also [29] for definitions), so that there are
optimal graphs for these types, too.

Optimal graphs are yet unknown for types of beyond-planar graphs with a density above
5n − 10. The known bounds of 5.5n − 11 for 3-planar [11] and 6.5n − 20 for quasi-planar
graphs [3] are tight up to a constant. Similarly, there is a constant gap for graphs with
geometric thickness two (doubly linear) [37], and for bar-visibility and rectangle visibility
graphs [37]. There are larger gaps for k-planar graphs with k ≥ 4 [1, 43], 2- and 3-bend RAC



Franz J. Brandenburg 3:3

graphs [28], and graphs avoiding special grids [2, 42].
In general, the recognition of beyond-planar graphs is NP-hard [29]. However, optimal

1-planar [17], optimal 2-planar [34], and optimal NIC-planar graphs [9] can be recognized in
linear time and optimal IC-planar graphs in cubic time [16]. The recognition problem for
optimal RAC, optimal 1-gap planar, optimal fan-crossing and optimal 1-fan-bundle graphs is
open. Since an optimal RAC graph is 1-planar and triangulated, the pairs of crossing edges
can be computed in cubic time [19], so that it remains to determine whether or not all pairs
of crossing edges can cross at a right angle in a straight-line drawing.

Our contribution: In this paper, we consider optimal graphs of the aforementioned
types τ of beyond-planar graphs. We study combinatorial properties and compute the range
for optimal graphs, which was only known partially in some cases. We show that every
graph has a subdivision that is a subgraph of an optimal τ -graph, whereas there are optimal
τ -graphs that contain K42 as a minor but not as a topological minor.

The paper is organized as follows: We introduce basic notions on beyond-planar graphs in
the next section and recall some properties of such graphs. We study combinatorial properties
of optimal graphs in Section 3 and minors in Section 4 and we conclude in Section 5.

2 Preliminaries

We consider graphs that are simple both in a graph theoretic and in a topological sense.
Thus there are no multi-edges or loops, adjacent edges do not cross, and two edges cross
at most once in a drawing. A graph G = (V,E) consists of sets of n vertices and m edges.
We assume that it is defined by a drawing Γ(G) in the plane. The planar skeleton of G (or
Γ(G)) is the subgraph induced by the uncrossed edges.

A crossed quadrangle, X-quadrangle for short, is a planar quadrangle with a pair of
crossing edges in its interior. There are no other vertices or edges in the interior, as opposed
to [23]. At several other places, the term kite has been used. Similarly, an X-pentagon
consists of a pentagon of five uncrossed edges and only a pentagram of five crossing edges
in its interior. These drawings of K4 and K5 have been used for optimal 1- and 2-planar
graphs [11, 13, 43]. We say that a vertex (edge) is in a triangle if it is in the boundary of
the triangle, and in an X-quadrangle if is a part of the X-quadrangle.

We consider beyond-planar graphs of type τ , where τ ranges over the set of beyond-planar
graphs for which optimal graphs are known: IC-planar, NIC-planar, 1-planar, 2-planar,
1-fan-bundle and right angle crossing (RAC) graphs, as well as fan-crossing free, grid crossing,
fan-crossing, fan-planar, 1-gap-planar and 5-map graphs.

For convenience, we do not distinguish between a graph, a drawing or an embedding, and
we assume that a graph and its drawing or embedding are always of the same type.

Next we summarize related work on beyond-planar graphs of type τ .

I Proposition 1. (i) An n-vertex graph is optimal 1-planar if it has 4n − 8 edges [13].
A graph G is optimal 1-planar if and only if the planar skeleton is a 3-connected
quadrangulation [46], such that G is obtained by inserting a pair of crossing edges in
each quadrangle. There are optimal 1-planar graphs if and only if n = 8 and n ≥ 10 [13].
The number of optimal 1-planar graphs is known for n ≤ 36 [25]. Optimal 1-planar
graphs have a unique embedding, except for extended wheel graphs XW2k, k ≥ 3, which
have two embeddings for k ≥ 4 [45] and eight for k = 3 [47]. The embeddings are unique
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3:4 On Optimal Beyond-Planar Graphs

up to graph isomorphism [47]. Optimal 1-planar graphs can be recognized in linear time
[17].

(ii) Every optimal fan-crossing free graph is 1-planar [26], and thus optimal 1-planar.
(iii) An n-vertex graph is optimal IC-planar if it has 13

4 n− 6 edges [51]. There are optimal
IC-planar graphs if and only if n = 4k and k ≥ 2 [51]. Optimal IC-planar graphs can
be recognized in cubic time [16].

(iv) An n-vertex graph is optimal NIC-planar if it has 18
5 (n − 2) edges [50]. There are

optimal NIC-planar graphs if and only if n=5k+2 for k ≥ 2 [9, 27]. Optimal NIC-planar
graphs have a unique NIC-planar embedding and can be recognized in linear time [9].

(v) An n-vertex graph is optimal 2-planar if it has 5n− 10 edges [43]. A graph G is optimal
2-planar if and only if the planar skeleton is a 3-connected pentangulation [11], such
that G is obtained by substituting each pentagram by an X-pentagram, that is adding a
pentagram of crossed edges in each pentagon. The number of optimal 2-planar graphs
is known for n ≤ 36 [35]. Every optimal 2-planar graph is an optimal fan-crossing [15],
fan-planar [38], 1-gap planar[10], and 5-map graph [18]. There are optimal 2-planar
graphs for every n ≥ 50 with n = 2 mod 3 [43]. Optimal 2-planar graphs can be
recognized in linear time [34].

(vi) There are optimal 1-gap planar graphs [10] and optimal fan-planar (fan-crossing) graphs
[38] for every n ≥ 20.

(vii) An n-vertex graph is optimal 1-fan-bundle if it has 13
3 (n− 2) edges [7]. Every optimal

1-fan bundle graph consists of a planar pentangulation, such that four crossing edges
are inserted in each pentagon (without creating a multi-edge). There are optimal 1-fan
bundle graphs if n = 2 mod 3 for properly chosen values of n [7].

(viii) An n-vertex graph is optimal RAC if it has 4n − 10 edges [28]. Every optimal RAC
graph is 1-planar [32]. The outer face of a drawing is a triangle. There are optimal
RAC graphs if n = 3k − 5, k ≥ 2 [28].

type density range of optimal graphs
1-planar 4n − 8 [13] n = 8 and n ≥ 10 [13]
IC-planar 13

4 n − 6 [51] n = 4k, k ≥ 2 [51]
NIC-planar 18

5 (n − 2) [50] n = 5k + 2, k ≥ 2 [9, 27]
2-planar 5n − 10 [43] n = 20 and n = 3k + 2, k ≥ 8 (*)
1-gap planar 5n − 10 [10] n ≥ 20 or n = 10, 11, 12, 15, 16, 17 (*)
1-fan-bundle 18

5 (n − 2) [7] n = 3k + 2, k ≥ 2 (*)
fan-crossing 5n − 10 [20, 39] n ≥ 20 [39]
RAC 4n − 10 [28] n ≥ 4 (*)

Table 1 Some types of beyond-planar graphs, their density and optimal graphs. A (*) indicates
an extension of the range in this work.

3 Combinatorial Properties

We now improve some results from Proposition 1.

I Lemma 2. An IC-planar drawing of an optimal IC-planar graph consists of triangles and
X-quadrangles. Every vertex is in a triangle and in exactly one X-quadrangle. X-quadrangles
are vertex disjoint. Every uncrossed edge is in a triangle. There exist optimal IC-planar
graphs with exponentially many IC-planar embeddings.
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Figure 1 An IC-planar graph with two IC-planar embeddings (from [16]).

(a) (b) (c) (d)

Figure 2 The smallest pentangulations with 20, 26, 29 and 32 vertices. Graph (a) is known as
dodecahedron graph.

Proof. X-quadrangles are vertex disjoint by IC-planarity. An optimal IC-planar graph has
n
4 X-quadrangles, such that every vertex is in an X-quadrangle. Also every uncrossed edge
must be in some triangle, since X-quadrangles do not share vertices or edges. The graph
in Fig. 1 is optimal IC-planar and has two IC-planar embeddings. By taking k copies and
a subsequent triangulation for optimality, there is an IC-planar graph that has 2k many
embeddings, where k = n/8. J

I Lemma 3. A NIC-planar drawing of an optimal IC-planar graph consists of triangles and
X-quadrangles, such that every edge is in an X-quadrangle and every uncrossed edge is in a
triangle.

Proof. An optimal NIC-planar graph has 3
5 (n− 2) X-quadrangles and 18

5 (n− 2) edges. Since
two X-quadrangles do not share an edge in a NIC-planar embedding, every edge is in an
X-quadrangle and every uncrossed edge is a triangle. Hence, there is an X-quadrangle on
one side of each uncrossed edge and a triangle on the other side. Note that the claim can
also be obtained from Corollary 4 in [9]. J

The full range for optimal 1-planar, IC-planar and NIC-planar graphs has been discov-
ered before, but only partially for 2-planar, 1-fan-bundle, and RAC graphs, as stated in
Proposition 1.

I Theorem 4. There are optimal 2-planar graphs if and only if n = 20 or n ≥ 26 and n = 2
mod 3.

Proof. There are 3-connected and even 5-connected 5-regular planar graphs with n faces if
and only if n = 20 or n ≥ 26 and n = 2 mod 3, as shown by Hasheminezhad et al. [35]. The
dual is a 3-connected pentangulation, which is turned into an optimal 2-planar if and only if
each pentagon is substituted by an X-pentagon, that is, it is filled by a pentagram, as shown
in [11]. The smallest pentangulations are shown in Fig. 2. At other places [10, 11, 38, 43] the
dodecahedron graph, shown in Fig. 2a, has been used, where recursively the dodecahedron
graph is substituted in a face. J

Note that there is no optimal 1-planar graph with seven or nine vertices [13] and no
optimal 2-planar graph with 21, . . . , 25 vertices. Moreover, the number of optimal 1-planar
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(a) (b) (c)

Figure 3 Optimal 1-gap planar graphs with (a) n = 10 and (b) n = 15 vertices and (c) the
addition of a vertex to augment K5 to K6 for 1-gap planar drawings.

and optimal 2-planar graph is known for n ≤ 36 from the number of 3-connected quad-
rangulations [25] and 3-connected 5-regular graphs [35] graphs, namely 3915683667721 and
16166596 for n = 36.

Clearly, every optimal 2-planar graph is optimal 1-gap planar, optimal fan-crossing, and
optimal fan-planar, since the density is 5n− 10 and the latter extend the 2-planar graphs.
The graphs are simultaneously 2-planar and fan-crossing, so that they are optimal 5-map
graphs [18]. Hence, the sets of optimal 2-planar and optimal 5-map graphs coincide, although
there are 2-planar graphs that are not 5-map graphs. Moreover, there are further optimal
1-gap planar, fan-planar and fan-crossing graphs, since the restriction to n = 2 mod 3 can be
dropped by the addition of a vertex in a pentagon [10, 38], see Fig. 3c. Surprisingly, there
are small optimal 1-gap planar graphs.

I Lemma 5. There are optimal 1-gap planar graphs for every n ≥ 20 and for n =
10, 11, 12, 15, 16, 17, but not for n ≤ 8.

Proof. Optimal 1-gap planar graphs can be constructed as before for 2-planar graphs in
Theorem 6 using 5-regular planar graphs for n ≥ 20 and n = 2 mod 3 and filling each face
such that there is a 5-clique including the boundary of the face. In general, the dodecahedron
graph has been used, where large graphs are obtained by repeatedly substituting a pentagon
by the dodecahedron. Graphs with n 6= 5k vertices for k ≥ 4 are obtained by the addition of
a vertex in the interior of a pentagram, such that there is a 6-clique, see Fig. 3c.

We introduce another substitution scheme and draw a bipartite graph with 20 edges
between two pentagons, such that the drawing is 1-gap planar, see Fig. 3a. So we obtain
optimal 1-gap planar graphs with 10 and 15 vertices, see Fig. 3b. Optimal 1-gap planar
graphs with 5k + 1 and 5k + 2 edges for k ≥ 2 are obtained by substituting the inner and/or
outer K5 by K6, as shown in Fig. 3c.

Clearly, there are no optimal 1-gap planar graphs for n ≤ 8, since such graphs have too
few edges. J

Hence, optimal 1-gap planar graphs are not known for n = 9, 13, 14, 18 and 19, and we
conjecture that there are no such graphs.

I Theorem 6. There are optimal 1-fan-bundle graphs exactly for every n ≥ 8 if n = 2 mod
3.
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(a) (b)

bundle NIC

(c)

Figure 4 RAC drawings of optimal RAC graphs with (a) six and (b) eight vertices, and (c) a
vertex-face graph.

Proof. Since optimal 1-fan-bundle graphs have 13
3 (n− 2) edges, there are optimal graphs

only for n = 3k+ 2 by integrality. The 5-clique minus one edge has only nine edges, so that it
is not optimal 1-fan-bundle. Optimal graphs for n = 3k + 2 and k ≥ 2 can be obtained from
a planar pentangulation and the insertion of four edges in each pentagon. A pentangulation
may have vertices of degree two, as opposed to the previous case for 2-planar graphs. Then
the neighbors of a degree two vertex are connected by an edge in only one of the adjacent
faces. The smallest optimal 1-fan-bundle graph is shown in Fig. 6b. By induction, remove
the crossed edges in a pentagon P , add three vertices as Steiner points, partition P into
three pentagons, such that there are two vertices of degree two, and insert four crossed edges
in each face, such that there is no multi-edge, see Fig. 6b. So we obtain optimal graphs for
every n = 3k + 2, k ≥ 2. J

A primal-dual graph of a 3-connected planar graph G is obtained by the simultaneous
drawing of G and its dual G∗, from which the dual vertex for the outer face has been removed.
Every primal edge of G is crossed by the dual edge between the faces on either side. Moreover,
every dual vertex for a face of G is adjacent to every primal vertex in the boundary of the
face, see Fig. 4c. A primal-dual graph is 1-planar. Primal-dual graphs (including the outer
face) have been used by Ringel [44] in his early study of 1-planar graphs. Brightwell and
Scheinerman [24] have shown that primal-dual graphs admit a RAC drawing, see also [31, 33].

I Theorem 7. There are optimal RAC graphs for every n ≥ 4.

Proof. Clearly, K4 and K5 are optimal RAC graphs. Optimal RAC graphs with six and
eight vertices are displayed in Fig. 4. In general, an optimal RAC graph can be constructed
from a primal-dual graph, as observed by Didimo et al [28]. In particular, optimal RAC
graphs with n ≥ 9 can be constructed a follows. Add k ≥ 2 vertices v1, . . . , vk in the interior
of an outer triangle ∆(a, b, c) with c on top. Add edges cvk and vivi+1 for i = 1, . . . , k − 1,
such that there is a path. Next add edges such that the so obtained graph is 3-connected and
inner faces are triangles or quadrangles. For example, add edges av1, bv1 and avi and bvj ,
where 2 ≤ i, j ≤ k and i is odd and j is even, such that there are k − 1 quadrangles in an
n-vertex graph with n = k + 3. Then there are three inner triangles and n− 4 quadrangles.
The primal-dual graph has 2n−1 vertices and 8n−14 edges, 2n−2 of which are in the primal
graph, 2n− 5 are in the dual graph and 4(n− 4) + 9 edges are added for the primal-dual
combination, and it is 1-planar [44]. One more vertex and four more edges are obtained
if a quadrangle of the primal graph is triangulated. The so obtained primal-dual graph is
3-connected and admits a RAC drawing [24], so that there is an optimal RAC graph for

CGT
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u

v

(a) a drawn graph

u

v

(b) an IC-planar host

u

v

(c) a NIC-planar host

u

v

(d) a 1-planar host

Figure 5 Illustration for the proof of Theorem 8. Each face of the host must be filled (b) by a
triangulation, (c) by gadgets from Fig. 6a and (c) by a pair of crossing edges. Vertices u and v have
degree four and dots are propagated from u to v in cw-order.

every n ≥ 9. The one for n = 7 is obtained in the same way from a planar drawing of K4,
see [28]. J

4 Minors

It is well-known that for any graph there exists a 1-planar subdivision, that is any graph is
a topological minor of a 1-planar graph. This fact has been improved to IC-planar graphs
and to upper bounds on the number of subdivisions [21]. In particular, any graph has a
3-subdivision that is RAC [28], a 2-subdivision that is fan-crossing, and a 1-subdivision that
is quasi-planar [21]. We consider minors in optimal graphs.

I Theorem 8. For any graph G there is an optimal beyond-planar graph H of type τ , where
τ is IC-planar, NIC-planar, 1-planar, 2-planar, 1-fan-bundle and RAC, respectively, such
that G is a topological minor of H.

Proof. Consider a drawing of G and treat it as a planar graph Γ, such that a crossing point
of two edges of G is a new vertex of degree four. We construct a host graph H by placing a
“gadget” at each crossing point, such that the crossing happens in the gadget. Thereafter,
the intermediate graph is augmented for optimality. The gadget is an X-quadrangle if the
type is 1-planar, IC-planar, NIC-planar, and RAC, respectively, and an X-pentagon or the
dodecahedron graph with crossing edges in each inner face for 2-planar and 1-fan-bundle
graphs.

First, for IC-planar graphs, we substitute each vertex v of G by an X-quadrangle, such
that v is one vertex of the X-quadrangle and there are three new vertices not in G. Then
replace each crossing by an X-quadrangle, see Fig. 5b. Every edge of G is partitioned into
segments, which are uncrossed pieces in the drawing. These segments are inherited by H
such that a segment connects vertices in two X-quadrangles. There are no further vertices in
H, so that every vertex is in an X-quadrangle. Two X-quadrangles are vertex disjoint, which
guaranties IC-planarity. By Lemma 2, optimality is obtained by a triangulation. Clearly, for
every edge of G there is a path in H such that two such paths are vertex disjoint.

Similarly, for NIC-planar graphs, we replace each crossing by an X-quadrangle such that
the X-quadrangles for two consecutive crossings along an edge share a vertex, see Fig. 5c.
In other words, segments are contracted. An uncrossed edge and the first (last) segment of
a crossed edge incident to a vertex of G is replaced by an X-quadrangle with the segment
as a diagonal. Thereby, every edge of G is subdivided, such that two paths for edges of G
are vertex disjoint in H. It remains to construct an optimal NIC-planar graph by filling the
remaining faces. In addition, we wish to keep the degree low. So far, the boundary of each
face consists of edges from X-quadrangles. If there is a triangle, we are done. The gadget
from Fig. 6a is inserted in a quadrangle. Larger faces are partitioned using X-quadrangles
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and triangles and the gadget for quadrangles, such that each edge of H is in an X-quadrangle
and in a triangle. Then H is an optimal NIC-planar graph by Lemma 3.

The planar skeleton of an optimal 1-planar graph is a 3-connected planar quadrangulation
[46]. It is obtained from G as follows. First, assume that G is 3-connected, otherwise, add
edges to obtain 3-connectivity, such that the degree of a vertex increases at most by three.
Next, draw G such that all vertices are in the outer face and the crossings in the interior. Let
v1, . . . , vn be the vertices of G in cyclic order in the so obtained drawing Γ1. Assume that
there is an uncrossed edge vivi+1 for i = 1, . . . , n with v1 = vn+1 between two consecutive
vertices in Γ1, where it is added if it was missing and is rerouted such that it is uncrossed,
otherwise. Next, assume that the number of vertices of even degree is even. Otherwise, add
a triangle to Γ1, such that its vertices are in the outer face and any two of them are not
consecutive. Each added vertex is connected to its neighbors in the outer face, such that it
has degree four. Let Γ2 be the so obtained drawing. Its outer face is bounded by a cycle of
uncrossed edges of even length, since both the number of vertices with odd and with even
degree is even.

Construct a planar drawing Γ3 from Γ2 by substituting each crossing by a quadrangle.
Thereby, we obtain a 3-connected planar graph. Next, consider all peripheral faces of Γ3,
which are faces with a vertex of G in the boundary other than the outer face. By assumption,
a peripheral face has one or two vertices of G in its boundary and an even number of vertices
from the substitution of crossings by quadrangles. For the subsequent quadrangulation,
edges of Γ3 can be subdivided if they are incident to an outer vertex. Traverse the vertices
in the outer face of Γ3 in cyclic order. Let v be a vertex of degree d in the outer face of
Γ3. Then the first and the last peripheral face incident to v have an even size and the
size is odd for the peripheral faces in between. Let e1, . . . , ed be the edges at vertex v in
cyclic order, where e1 and ed are uncrossed edges in the outer face. Subdivide edge e2i+1 for
i = 1, . . . , dd−3

2 e if v does not inherit a so called “dot” from its predecessor, and subdivide
edge e2i for i = 1, . . . , bd−1

2 c, otherwise. Vertex vi propagates a dot to vi+1 if its last but
one edge ed−1 is subdivided. Otherwise, the dot is consumed. Let Γ4 be the so obtained
planar drawing, see Fig. 5d.

Now quadrangulate each face of size at least six of Γ4 by adding uncrossed edges, such
that each vertex of degree two, that is a subdivision vertex, is incident to at least one
edge that is added for a quadrangulation. We claim that the so obtained drawing Γ5 is
a 3-connected planar quadrangulation. To see this, first observe that edges of Γ5 do not
cross by construction. Second, the graph from Γ5 is 3-connected, since G is 3-connected
and connectivity is preserved by the construction. In particular, if p is subdivision vertex
on edge uv, then p is incident to another vertex w by the quadrangulation. Now there are
three vertex disjoint path between p and any other vertex of Γ5 that pass through u, v and
w. Finally, the size of each face of Γ4 is even. This holds for the outer face, since G has an
even number of vertices, and for any face, that is not peripheral, since each crossing point in
a face of Γ3 is replaced by two vertices from a quadrangle. Also the size of each peripheral
face of Γ5 is even. Therefore, consider the peripheral faces f1, . . . , fd−1 incident to vertex
vi, where vi has degree d ≥ 3. If vi does not inherit a dot from its predecessor, then the
size of f1 is even. By a subdivision of edge e2i+1 for i = 1, . . . , dd−3

2 e, the size of face fj for
j = 2, . . . , d− 2 is increased by one, so that it is even. If d is even, then also the size of fd−1
is increased by one. Then a dot is propagated, such that the size of fd−1 is increased again
as the first face of vi+1. The case in which vi inherits a dot is similar. Since the number of
vertices of even (and odd) degree is even, all created dots are consumed. Hence, the size of a
face of Γ4 is even. Thus it can be quadrangulated, so that Γ5 is a planar quadrangulation.
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bundle NIC

(a)
bundle NIC

(b) (c)

Figure 6 Illustration for the proof of Theorem 8. (a) A NIC-planar graph in a quadrangle.
(b) The smallest optimal 1-fan-bundle graph with three Steiner points for a pentangulation of a
pentagon. (c) A bypass for three pairwise crossing edges using a primal-dual graph and auxiliary
vertices. are colored red, blue and green.

Finally, add a pair of crossed edges in each quadrangle. Thereby, we obtain a optimal
1-planar H that contains a subdivision of G as a subgraph, since there is an X-quadrangle
for each crossing of edges of G.

For 1-planarity, the size of the faces of the drawing of G is even if the crossing points are
replaced by X-quadrangles and the first (last) segment between a vertex and a crossing point
is subdivided. Then the faces can be partitioned into quadrangles, which are augmented to
X-quadrangles, see [48]. The planar skeleton is 3-connected [5], so that H is optimal 1-planar.

For 2-planarity, the drawing of G must be transformed into a 3-connected pentangulation.
Therefore, we first replace every crossing point in the drawing of G by the dodecahedron
graph, as shown in Fig. 2a, such that the segment of an edge between two crossing points
is attached to two outer vertices on opposite sides of the outer pentagon. Alternatively,
two vertices of adjacent pentagons coincide, as before in the NIC-planar case. Clearly, the
so obtained graph is planar. If every inner pentagram is later filled by a pentagram, then
two crossing edges can be routed internally such that their subdivisions are vertex disjoint.
Hence, there is a subdivision of G. Next, large faces of size at least six are partitioned into
pentagrams, triangles and quadrangles such that there are no vertices of degree two and the
intermediate graph is 3-connected. If there is a quadrangle, then insert the dodecahedron
graph in its interior and partition the region in between into three more pentagons. Similarly,
the region between a triangle and an inserted dodecahedron graph is partitioned into two
pentagons and a quadrangle, which is partitioned into pentagons as described before. Finally,
all pentagons are filled by pentagrams such that there are only X-pentagons. This does
not create a multi-edge, since every vertex of the planar skeleton has degree at least three,
and there is no separation pair, so that the pentangulation is 3-connected. Two crossing
edges from the drawing of G are replaced by two short paths that can be routed internally
through the X-pentagrams such that the paths are vertex disjoint. Hence, there is an optimal
2-planar graph that contains a subdivision of G as a subgraph.

For 1-fan-bundle graphs, we proceed as before, but finally fill the pentagrams by four
edges, such that an edge crossing in G is transferred to an edge crossing inside a pentagon.

For RAC graphs, suppose that G is drawn with straight-line segments. Treat the drawing
as a planar graph and triangulate it. Then subdivide each edge, place a new vertex in each
face (except for the outer face) and connect the inserted vertex with the six vertices in the
boundary of the face such that there is a re-triangulation. Now construct the primal-dual
graph H, which is 1-planar and an optimal RAC graph, since it admits a RAC drawing
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as shown by Brightwell and Scheinerman [24]. It remains to consider paths for edges of G.
Every edge of G has a subdivision in H which uses the segments from the drawing. Then
two paths meet in the crossing point for their edges. This collision is circumvented using a
bypass. Suppose that edges e, f and g cross each other such that there is a triangle in the
drawing of G with crossing points u, v and w, see Fig. 6c. All other cases are similar. Then
e can bypass u and pass through w, f can pass through u and bypass v, and h can bypass w
and pass through v. For edge e, the bypath begins at the subdivision point just before u, it
goes through the (vertices for the) faces next to u, and ends at the subdivision point on e
after u. Thereby it crosses the path for edge g. Hence, there are vertex disjoint paths in
the vertex face graph H for the edges of G, such that a subdivision of G is a subgraph of H,
that is G is a topological minor of H. J

I Corollary 9. Any graph is a topological minor of an optimal graph for each of the following
types: fan-crossing free, grid-crossing, fan-crossing, fan-planar, 1-gap-planar, 4-map, 5-map.

Proof. We can use the constructions for 1-planar and 2-planar graphs from (the proof of)
Theorem 10, since optimal fan-crossing free (grid crossing) graphs are optimal 1-planar [26],
and every 4-map graph is a 3-connected triangulated 1-planar graph. Similarly, the crossed
dodecahedron graph is a 5-map graph [18] and simultaneously 2-planar and fan-crossing,
such that the construction for 2-planar graphs can be used for all types of graphs with a
density of 5n− 10. J

Finally, we distinguish topological minors from minors in optimal beyond-planar graphs.
Similar to the case of K5 and graphs of degree at most three, we wish to keep the degree
of graphs low if they contain a (large) clique as a minor. The degree is determined by the
gadgets for edge crossings and the filling of faces towards optimality. The degree of the minor
can be decreased to three.

A 3-regularization transforms a graph into a graph of degree three by a local operation
on vertices. Examples are the node-to-circle expansion, which expands every vertex of degree
d into a circle of d vertices of degree three [21], or the expansion into a binary tree with d
leaves. Each vertex on the circle (leaf) inherits one incident edge. 3-regularization preserves
minors, such that G is a minor of a 3-regularization η(H) if G is a minor of H. However,
3-regularization does not preserve topological minors, since the obtained graphs have degree
at most three, and therefore exclude any graph with a vertex of degree at least four as a
topological minor. In consequence, K5 is not a topological minor of any 3-regularization.

I Theorem 10. For every type τ of beyond-planar graphs as above, there is a constant dτ
and an optimal τ -graph H, such that the complete graph Kk with k = dτ is a minor but not
a topological minor of H. In the above cases, we have dτ ≤ 42.

Proof. For every type τ , there is an optimal τ -graph H, such that the 3-regularization of
Kd is a (topological) minor of H by Theorem 8. Recall the construction of H from the proof
of Theorem 8 and try to keep the degree low.

For IC-planar graphs, there is a triangulation of faces that increases the degree of each
vertex by at most two, and there are at most two faces for each vertex, since there are
gadgets for the crossing points. Hence, H has degree at most eight, so that there are optimal
IC-planar graphs that contain η(K10) as a minor, but not as a topological minor.

Similarly, the degree of H can be kept as low as 24 for NIC-planar graphs, and 14 for
1-planar graphs, since X-quadrangles and gadgets are used for a partition of large faces.

For RAC graphs, we first subdivide each edge of the planar graph from the drawing
and create triangles with two subdivision points and a vertex or a crossing point from the
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drawing such that each crossing point is surrounded by four triangles. Then we triangulate
the remaining faces such that the degree of each subdivision point is increased at most by
two from the face on either side. The intermediate graph is a triangulated planar graph of
degree at most ten. In the next step, we use a primal-dual graph for each triangle such that
graph H has degree at most 40.

For 2-planar and 1-fan-bundle graphs, there is a pentagon around each vertex and
each crossing point in the drawing of G. Faces can be filled such that at most most four
dodecahedron graphs meet in a point. Thereby, graph H has degree at most 12.

In any case, graph H does contain a topological minor of degree at least d+ 1, so that
Kd+2 is a minor but not a topological minor of H. J

5 Conclusion

In this work, we study optimal graphs for some important types of beyond-planar graphs.
We compute and extend the range for such graphs and show that optimal graphs contain
any graph as a (topological) minor.

Open problems include tight bounds on the density of further beyond-planar graphs
including 3-planar and 1-bend RAC graphs, the characterization of optimal fan-crossing and
optimal 1-gap planar graphs, and the recognition problem for optimal RAC graphs.
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41 Kazimierz Kuratowski. Sur le probléme des courbes gauches en topologie. Fund. Math.,
15:271–283, 1930.

42 János Pach, Rom Pinchasi, Micha Sharir, and Géza Tóth. Topological graphs with no large
grids. Graphs and Combinatorics, 21(3):355–364, 2005. doi:10.1007/s00373-005-0616-1.

43 János Pach and Géza Tóth. Graphs drawn with a few crossings per edge. Combinatorica,
17:427–439, 1997. doi:10.1007/BF01215922.

44 Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abh. aus dem Math. Seminar der
Univ. Hamburg, 29:107–117, 1965. doi:10.1007/bf02996313.

45 H. Schumacher. Zur Struktur 1-planarer Graphen. Mathematische Nachrichten, 125:291–300,
1986.

46 Yusuke Suzuki. Optimal 1-planar graphs which triangulate other surfaces. Discrete Math.,
310(1):6–11, 2010. doi:10.1016/j.disc.2009.07.016.

47 Yusuke Suzuki. Re-embeddings of maximum 1-planar graphs. SIAM J. Discr. Math., 24(4):1527–
1540, 2010. doi:10.1137/090746835.

48 Yusuke Suzuki. K7-minors in optimal 1-planar graphs. Discret. Math., 340(6):1227–1234,
2017. doi:10.1016/j.disc.2017.01.022.

49 Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114:570–590, 1937.
doi:10.1007/BF01594196.

50 Xin Zhang. Drawing complete multipartite graphs on the plane with restrictions on crossings.
Acta Math. Sinica, English Series, 30(12):2045–2053, 2014.

51 Xin Zhang and G. Liu. The structure of plane graphs with independent crossings and its
application to coloring problems. Central Europ. J. Math, 11(2):308–321, 2013.

http://dx.doi.org/10.4230/OASIcs.SOSA.2019.8
http://dx.doi.org/10.4230/OASIcs.SOSA.2019.8
https://arxiv.org/abs/2108.00665
https://arxiv.org/abs/2108.00665
http://arxiv.org/abs/2108.00665
http://dx.doi.org/10.7155/jgaa.00232
http://dx.doi.org/10.1007/978-981-15-6533-5
http://dx.doi.org/10.1016/S0925-7721(99)00018-8
http://dx.doi.org/10.1016/S0925-7721(99)00018-8
http://dx.doi.org/10.37236/10521
http://dx.doi.org/http://dx.doi.org/10.1016/j.cosrev.2017.06.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.cosrev.2017.06.002
http://dx.doi.org/10.1007/s00373-005-0616-1
http://dx.doi.org/10.1007/BF01215922
http://dx.doi.org/10.1007/bf02996313
http://dx.doi.org/10.1016/j.disc.2009.07.016
http://dx.doi.org/10.1137/090746835
http://dx.doi.org/10.1016/j.disc.2017.01.022
http://dx.doi.org/10.1007/BF01594196

	1 Introduction
	2 Preliminaries
	3 Combinatorial Properties
	4 Minors
	5 Conclusion

