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—— Abstract

A bipartite graph G = (X UY, E) is a 2-layer k-planar graph if it admits a drawing on the plane
such that the vertices in X and Y are placed on two parallel lines respectively, edges are drawn as
straight-line segments, and every edge involves at most k crossings. Angelini, Da Lozzo, Forster,
and Schneck [GD 2020; Comput. J., 2024] showed that every 2-layer k-planar graph has pathwidth
at most k + 1. In this paper, we show that this bound is sharp by giving a 2-layer k-planar graph
with pathwidth k£ + 1 for every k > 0. This improves their lower bound of (k + 3)/2.
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1 Introduction

A 2-layer drawing of a bipartite graph G with bipartition (X,Y") is a drawing on the plane
obtained by placing the vertices in X on a line (layer), placing the vertices in Y on another
parallel line (layer), and drawing the edges as straight-line segments. This drawing style
is not only a natural model for drawing bipartite graphs, but also has an application to
layered drawing, which is similarly defined, but may have many layers: the Sugiyama method,
a method for producing a layered drawing of a directed graph introduced by Sugiyama,
Tagawa, and Toda [18] employs the crossing minimization problem on the 2-layer model as a
subroutine.

Due to their importance, many graph classes admitting good 2-layer (or h-layer) drawings
have been introduced, and their recognition algorithms have been studied in the literature.
The crossing minimization problems for 2-layer and h-layer drawings are both NP-complete [10,
11]. However, they admit FPT algorithms with respect to h + ¢, where ¢ is the minimum
number of edge crossings [7]. Angelini, Da Lozzo, Forster, and Schneck [1, 2] initiated the
study of 2-layer k-planar graphs, the graphs that admit a 2-layer drawing such that every
edge involves at most k crossings. Kobayashi, Okada, and Wolff [15] gave an XP algorithm
for recognizing 2-layer k-planar graphs with respect to k, which yields a polynomial-time
algorithm for every fixed k. They also showed that the recognition problem is XNLP-hard
and hence admits no FPT algorithm under a plausible assumption. Fan-planar drawings
with h layers have also been studied [3]. In a fan-planar drawing, an edge can cross other
edges any number of times while the edges crossed by a single edge have a common endpoint.
For recognizing 2-layer fan-planar graphs, linear-time algorithms are known for trees [3]
and biconnected graphs [4]. For general graphs, Kobayashi and Okada [14] recently gave
a polynomial-time algorithm, by incorporating fan-planarity into the algorithm of [15] for
recognizing 2-layer k-planar graphs.

As layered drawings have linear shapes, those classes often have bounded pathwidth.
The class of bipartite graphs that admit a crossing-free 2-layer drawing is equivalent to the
class of caterpillars, which have pathwidth at most 1. More generally, the graphs admitting
an h-layer drawing with k edge crossings have pathwidth at most h + 2k — 1 [7]. Angelini,
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Da Lozzo, Forster, and Schneck [1, 2] showed that 2-layer k-planar graphs have pathwidth
at most k + 1, for which they also gave a lower bound of (k + 3)/2. The authors in [3]
showed that h-layer fan-planar graphs have pathwidth at most 2h — 2. Recently, Wood [19]
characterized the pathwidth-boundedness of bipartite graphs by the existence of a certain
2-layer drawing.

Our results. In this paper, we consider the pathwidth of 2-layer k-planar graphs and show
that the upper bound k + 1 of [1, 2] is sharp. To this end, we give a 2-layer k-planar graph
with pathwidth exactly k + 1 for every k > 0, improving their lower bound (k +3)/2 of [1, 2].

Related results. An outer k-planar drawing is a drawing such that the vertices are placed
on a circle, the edges are straight-line segments, and every edge involves at most k crossings.
Outer k-planar graphs, the graphs that admit an outer k-planar drawing, are known to have
treewidth at most 1.5k + 2 [9], for which Pyzik [17] gave a lower bound of 1.5k + 0.5.

2 Preliminaries

In this section, we give formal definitions for 2-layer k-planar graphs, pathwidth, and node
searching number, which we use to give the lower bound of pathwidth, and some useful
lemmas. We follow the standard notations and terminology in graph theory (see, for example,
[6]). For an integer n > 1, let [n] denote the set {1,2,...,n}. For integers n, < n,, let
[ng, n.] denote the set {ng,n¢e+1,...,n,}.

2-layer k-planar graphs. Since the proofs in this paper do not require the use of actual
embeddings, we define 2-layer k-planar graphs combinatorially. It can be easily confirmed
that the definition below is equivalent to the (topological) one used in [1, 2].

Let G = (X UY, E) be a bipartite graph with bipartition (X,Y’). Let nx = |X| and
ny = |Y]. Let nx: X — [nx], 7y : Y — [ny] be bijections. A 2-layer drawing of G is
a pair of bijections m = (7x,my). On a 2-layer drawing 7, an edge {z1,y1} € E crosses
an edge {x9,y2} € E, where 1,20 € X and y;,y2 € Y, if and only if either one of
(rx(z1) < wx(22)) A (y (y1) > 7y (y2)) or (wx(z1) > wx(22)) A (7y (y1) < Ty (y2)) holds.
For an integer k > 0, a 2-layer drawing 7 is a 2-layer k-planar drawing if every edge in F is
involved in at most k crossings on w. The graph G is a 2-layer k-planar graph if it admits a
2-layer k-planar drawing.

Pathwidth. Let G = (V, E) be a graph. A path decomposition of G is a pair of a path P
and a family of subsets V = (V},)pev(p) such that:

V=U, Vp

for every edge {u,v} € E, there exists V,, € V such that u,v € V,; and

for every vertex v € V, the subgraph of P induced by {p € V(P) | v € V},,} is connected.
The width of a path decomposition (P, V) is defined as max,ev (p) |Vp| — 1. The pathwidth of
a graph G, denoted by pw(G), is the minimum width of a path decomposition of G.

Node searching number. Node searching is a one-player game played on a graph. The
edges are initially contaminated and the goal is to clean all the edges. The possible moves in
a turn are either placing or removing a guard on a vertex. A vertex is guarded when a guard
is placed on the vertex. An edge becomes clean if the endpoints are both guarded. An edge
becomes contaminated if it shares a non-guarded endpoint with a contaminated edge. We
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call this recontamination. After each turn, recontamination spreads as far as possible via
non-guarded vertices. A search strategy is a sequence of moves from the initial configuration,
where the edges are all contaminated and there is no guard, to a configuration where all the
edges are clean. The cost of a search strategy is the maximum number of guards placed at
the same time in the strategy. For a graph G, the node searching number of G, denoted
by ns(G), is the minimum cost of a search strategy on G. Kirousis and Papadimitriou [12]
showed that ns(G) is identical to interval thickness, which is identical to pathwidth plus
one [5, Theorem 29].

» Lemma 1 ([5, 12]). For every graph G, ns(G) = pw(G) + 1 holds.

It is known that allowing recontamination to happen does not help to decrease the number
of guards required [13, 16]. This allows us to consider only search strategies with no
recontamination.

» Lemma 2 ([13, 16]). For every graph G, there exists a search strategy on G with cost
ns(G) that does not cause recontamination.

3 Lower bound
In this section, we show our main result.
» Theorem 3. For every k > 0, there exists a 2-layer k-planar graph with pathwidth k + 1.

For k = 0, the path consisting of two vertices clearly satisfies the conditions. Hence, in
the following we show the claim for the case where k > 1. To this end, we first construct
a grid-like graph Gy with pathwidth k£ + 1. We then split its vertices so that the resulting
graph Wy admits a 2-layer k-planar drawing, preserving its pathwidth.

For an integer k > 1, let G}, be a graph with vertex set Vj, = [k+ 2] x [3k + 6] and edge set

={{(r,0),(r+ L0} |relk+1,ceBk+6]}U{{(r,c),(r,c+ 1)} | r € [k],c € [3k + 5]};
see Figure 1. For r € [k + 2], we call the set of vertices {(r,¢) | ¢ € [3k + 6]} row r. Similarly,
for ¢ € [3k + 6], we call the set of vertices {(r,c) | r € [k + 2]} column c. We call an edge a
row edge (a column edge) if the endpoints are in the same row (column).

When analyzing a search strategy on Gy, we say that a row (column) is clean if all the
row (column) edges on the row (column) are clean.

3k +6

Figure 1 An illustration of G, which has k + 2 rows and 3k + 6 columns.

» Lemma 4. For every k > 1, pw(Gg) =k + 1.
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Proof. It is not difficult to see that Gy is a minor of the (k 4+ 1) x (6k 4+ 12) grid, which
has pathwidth k 4+ 1 [8, Theorem 4.1]. As pathwidth is minor-monotone [5, Lemma 16],
pw(Gk) < k+ 1 follows. Note also that pw(Gy) > k is clear as G}, contains as a subgraph
the k x k grid, which has pathwidth k [8, Theorem 4.1]. Hence, we have pw(Gy) € {k, k+ 1}
and it suffices to disprove pw(Gy) = k.

Assume for contradiction that pw(Gy) = k. Then, there exists a search strategy S with
cost k + 1. We further assume that S does not cause recontamination by Lemma 2, and
employ the following observation. This is almost the same as [8, Observation 3.2].

» Observation 5. If a row r € [k] has both contaminated and clean edges, then there must
be at least one guard on the row r. This property also holds for every column ¢ € [3k + 6].

First, observe that in the search strategy S, none of the rows 1, ...,k can have become
clean unless at least 2k + 5 columns are already clean. Otherwise, there are at most 2k + 4
clean columns and at most k + 1 columns with a guard on them, leaving at least one
column that is neither clean nor has a guard on it. By Observation 5, this column has only
contaminated edges and would hence recontaminate the row, contradicting the assumption
that S causes no recontamination.

Next, observe that once k + 2 columns become clean, each of the rows 1,...,k must
contain a clean edge in S. Otherwise, there exists a row with all its edges being contaminated.
Hence, to prevent recontamination, we must place guards on at least k + 2 intersections with
the clean columns, which contradicts the cost of k + 1.

Combining the above two observations and Observation 5, if the number of clean columns
is in [k 4 2,2k + 4], there must be at least one guard on each of the rows 1,..., k. Let ¢;
denote the i-th column to become clean. Note that two columns cannot become clean in the
same turn and hence this is uniquely determined. By Observation 5, when cg12 becomes
clean, at least one of the k 4+ 2 columns, cx43,Crt4,- .-, C2x+4, has no clean edge. Let ¢ be
such a column. Consider the turn when the edge {(k + 1,¢), (k + 2, ¢)} becomes clean. Right
after this turn, there are still at most 2k + 4 clean columns, and hence at least k guards are
placed on the k other rows. This implies that there are at least k + 2 guards placed, which
contradicts the cost of k + 1. |

Next, for every k > 1, we construct a wall-like 2-layer k-planar graph W} containing Gy,
as a minor. Since pathwidth is minor-monotone [5, Lemma 16], pw(W}) > k + 1 follows
from Lemma 4. Hence, showing the existence of such graphs is sufficient to prove Theorem 3.
Note that pw(Wy) < k + 1 follows when Wy, is a 2-layer k-planar graph.

We first initialize W}, as a graph consisting only of k rows with ¢ = 4k(3k + 6) vertices
each; namely, we let W, be a graph with vertex set {(r,c) | r € [k],c € [{]} and edge set
{{(rye),(r,e+ 1)} | r € [k],c € [£ —1]}. We then add edges corresponding to the column
edges of Gy. For every ¢ € [3k + 6], we apply the following operations to W}, (see Figure 2):
1. for every r € [k — 1], add an edge {(r,4k(c — 1) +4r — 3), (r + 1,4k(c — 1) + 4r — 2)},
2. add two vertices (k + 1,4kc — 2), (k + 2,4kc — 1), and
3. add two edges {(k,4kc — 3), (k + 1,4kc — 2)},{(k + 1, 4kc — 2), (k + 2,4kc — 1)}.

We call a subgraph consisting of the two vertices and the two edges added in Steps 2 and 3
for some ¢ a hair. We define rows and columns for W}, similarly: we call {(r,¢) | ¢ € [{]} row
r,and {(r,c) | r € [k + 2], (r,c) € V(Wg)} column c.

Now we show that the graph W} obtained in this manner satisfies the claimed conditions,

which completes the proof of Theorem 3.

» Lemma 6. For cvery k > 1, Wy, contains Gy as a minor.
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Figure 2 An illustration of W. The same pattern appears every 4k columns.

Proof. For r € [k] and ¢ € [3k + 6], let S, C V(W}) be the vertex set {(r,¢') | ¢ €

[4k(c — 1) + 1,4kc]}. By contracting S, . into a single vertex s, . for every r, ¢, we obtain a
graph isomorphic to Gj. Note that s, . corresponds to (r,c) € V(Gy). <

» Lemma 7. For every k > 1, Wy, is a 2-layer k-planar graph.

Proof. Let V; C V(W}) be the vertex set {(r,c) € V(W) | ¢ = 1 (mod 2)} and Vo =
V(W) \ V1. Observe that (V1,V3) is a bipartition of V(Wy). For i € {1,2}, let m; be the
linear order of V; obtained by sorting V; in lexicographical order, where we define the key for
a vertex (r,c) € V; as (¢,r). We then claim that m = (7, m2) is a 2-layer k-planar drawing of
Wi. Note that in a 2-layer drawing two edges do not cross more than once. Hence it suffices
to show that every edge crosses at most k other edges in 7.

First consider the subdrawing of 7 induced by the row edges; see Figure 3. In this
subdrawing, a row edge {(r,¢), (r,c+ 1)} crosses k — r edges between columns ¢ — 1, ¢ and
r — 1 edges between columns ¢+ 1, ¢ + 2. Hence, this subdrawing is (k — 1)-planar.

r—1
A~ T
r N~~~
k—r

Figure 3 A part of the subdrawing of 7 = (71, m2) induced by the row edges.

Next, we show that a non-row edge crosses at most k other edges in w. There are two
types of non-row edges: edges connecting two consecutive rows among rows 1,...,k (see
Figure 4a) and edges of the hairs attached to row k (see Figure 4b). Observe that non-row
edges do not cross pairwise, since for every fourth column, only one of an edge of the first
type or a single hair appears. Hence, as in Figure 4, a non-row edge crosses at most k edges
regardless of its type. Note that we place a hair vertex immediately after the other vertices
in the same column.

Lastly, we bound the number of crossings on a row edge in 7. Consider a non-row edge of
the first type. It is between columns 4t + 1 and 4t + 2 for some ¢. As in Figure 4a, it crosses
only row edges between two columns, 4t and 4t + 1, or 4t + 2 and 4t + 3. Next, consider a
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k—r k
~—~ r+1 k+1
M
(a) A non-row edge connecting two of rows 1,...,k. (b) Two non-row edges forming a hair.

Figure 4 Two types of non-row edges.

hair. It is attached to vertex (k,4t 4+ 1) for some ¢. Its first edge, namely the edge between
rows k and k + 1, crosses only edges between columns 4¢ + 2 and 4t + 3. Similarly, its second
edge crosses only edges between columns 4t + 3 and 4¢ + 4. Since these t’s are distinct, we
can show that every row edge crosses at most one non-row edge in 7 as follows.
Consider a row edge between columns 4t + 0 and 4t + 1. Among non-row edges, this
crosses only (if exists) the single edge of the first type between columns 4¢ 4+ 1 and 4¢ + 2.
Consider a row edge between columns 4t + 1 and 4¢ + 2. This does not cross any non-row
edges.
Consider a row edge between columns 4t + 2 and 4t 4+ 3. Among non-row edges, this
crosses only the single edge of the first type between columns 4t+ 1 and 4t + 2 or otherwise
the first edge of the hair attached to vertex (k, 4t + 1).
Consider a row edge between columns 4t + 3 and 4t + 4. Among non-row edges, this
crosses only (if exists) the second edge of the hair attached to vertex (k,4¢ + 1).
Recall that every row edge crosses at most £ — 1 row edges. Hence, every row edge crosses at
most k other edges in 7. |

4 Conclusions

In this paper, we gave a family of 2-layer k-planar graphs to show that the upper bound
k + 1 on the pathwidth of 2-layer k-planar graphs is sharp.

For future work, filling the gap in treewidth bounds for outer k-planar graphs (1.5k+2 [9]
and 1.5k + 0.5 [17]) would be an interesting open problem to be revisited. The lower bound
of 1.5k 4 0.5 [17] shares a base idea with ours. It is achieved by nicely arranging the vertices
of a graph that contains two large grid graphs. Hence, the splitting idea used in Theorem 3,
splitting vertices sufficiently to untangle parts with many crossings, might be helpful to
improve the lower bound.
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