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Abstract
We present approximation algorithms for the following NP-hard optimization problems related to
bottleneck spanning trees in metric spaces.

1. The disjoint bottleneck spanning tree problem: Given n pairs of points in a metric space, find
two disjoint trees each containing exactly one point from each pair and minimize the largest
edge length (over all edges of both trees). It is known that approximating this problem by a
factor better than 2 is NP-hard. We present a 4-approximation algorithm for this problem. This
improves upon the previous best known approximation ratio of 9. Our algorithm extends to a
(3k − 2)-approximation for a more general case where points are partitioned into k-tuples and
we seek k disjoint trees.

2. The generalized bottleneck spanning tree problem: Given n points in some metric space that are
partitioned into clusters of size at most 2, find a tree that contains exactly one point from each
cluster and minimizes the largest edge length. We show that it is NP-hard to approximate this
problem by a factor better than 2, and present a 3-approximation algorithm.

3. The partitioned bottleneck spanning tree problem: Given kn points in some metric space, find k
disjoint trees each containing exactly n points and minimize the largest edge length (over all
edges of the k trees). We show that it is NP-hard to approximate this problem by a factor better
than 2 for any k > 2. We present an α-approximation algorithm for this problem where α = 2
for k = 2, 3 and α = 3 for k > 4. Towards obtaining these approximation ratios we present tight
upper bounds on the edge lengths of k equal-size disjoint trees that can be obtained from the
nodes of a given tree. This result is of independent interest.

Our hardness proofs imply that it is NP-hard to approximate the non-metric version of the
above problems within any constant factor. If we seek traveling salesperson tours (instead of trees)
then our algorithms simply extend to achieve approximate solutions with factors three times those
mentioned above.
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1 Introduction

Spanning trees are fundamental structures in graph theory and combinatorics. The problem
of finding spanning trees with enforced properties has received considerable attention from
both theoretical and practical points of view. For example, the minimum spanning tree
(MST) problem asks for a spanning tree with minimum total edge-length, and the bottleneck
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3:2 Approximating Bottleneck Spanning Trees on Partitioned Tuples of Points

spanning tree (BST) problem asks for a spanning tree whose largest edge-length is minimum.
Besides their interesting theoretical properties, these problems find applications in the
design of networks, including computer networks, wireless networks, and transportation
networks, to name a few. Bottleneck spanning trees in particular are important in designing
telecommunications networks with short connections (edges). Short connections are desirable
in many ways because they require lower transmission ranges, are more secure, and cause less
interference. This paper addresses three closely related bottleneck spanning tree problems
(illustrated in Figure 1):

(a) 2-DBST (b) 2-GBST (c) 2-PBST

Figure 1 Illustration of the problems for k = 2; black and white squares/circles represent tuples.

1. The disjoint bottleneck spanning tree (k-DBST) problem: Given kn points in some metric
space that are partitioned into k-tuples, find k disjoint trees each containing exactly one
point from each tuple and minimize the largest edge length (over all edges of the k trees).

2. The generalized bottleneck spanning tree (k-GBST) problem: Given n points in some
metric space that are partitioned into clusters of size at most k, find a tree that contains
exactly one point from each cluster and minimizes the largest edge length. The term
“spanning” refers to span all clusters.

3. The partitioned bottleneck spanning tree (k-PBST) problem: Given kn points in some
metric space, find k disjoint trees each containing exactly n points and minimize the
largest edge length (over all edges of the k trees).

The above problems are natural generalizations of the standard BST problem. For k = 1,
all above problems are equivalent to the BST problem which can be solved optimally in
polynomial time [10]. For k > 2, all above problems are NP-hard and cannot be approximated
by a factor better than 2 unless P = NP (this will become clear shortly). The focus of this
paper is on k > 2. We first present constant-factor approximation algorithms for k = 2.
Then we extend some of our algorithms for larger k.

Notice that the k-DBST, k-GBST, and k-PBST problems are defined (above) with respect
to the metric space. Thus, all our references to previous works and results apply to the
metric space (unless it is explicitly mentioned to be for the non-metric space).

1.1 Some related works and applications
The problems introduced above find real-world applications that we put into context together
with some related works. In our description we implicitly assume that k is at least 2.

(1) The k-DBST problem is introduced by Arkin et al. [2]. Motivated by the problem
of maintaining secure connectivity in networks involving replicated data, Arkin et al. [2]
introduced a class of problems that ask for k disjoint structures (trees, cycles, matchings)
each containing one point from every given k-tuple. In particular they studied these problems
for k = 2. Among many interesting results they presented a 9-approximation algorithm
for the 2-DBST problem and an 18-approximation algorithm for computing two disjoint
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traveling salesperson tours (instead of trees). It is easily seen, from their Lemma 8, that
the 9-approximation algorithm can be extended to achieve a (6k − 3)-approximation for the
k-DBST problem. Although some of the results of Arkin et al. [2] have been improved by
Johnson [24], their ratios 9 and 18 are still the best known. As for the lower bound, Johnson
[24] showed that it is NP-hard to approximate the 2-DBST problem by a factor less than 2.

(2) The k-GBST problem is closely related to the k-generalized minimum spanning tree
(k-GMST) problem, introduced by Myung et al. [32]. The k-GMST problem asks for a tree
that contains exactly one point from each cluster and minimizes the total-edge length. This
problem is well studied (see e.g. the recent survey by Pop [36] and references therein). The
k-GMST problem is NP-hard even for k = 2 in the Euclidean plane. Even a more restricted
version where the two points in each cluster have the same x or y coordinates is NP-hard
[16, 19, 25]. The metric version of the k-GBST can be approximated by a ratio of 2k using
linear programming [38] combined with the so-called parsimonious property [21]. Related
work [7, 36, 37] also addresses the generalized traveling salesperson problem (TSP) in which
the tour must contain exactly one point from each cluster. The group Steiner tree is another
related problem which asks for a shortest tree that contains at least one point from each
cluster. The non-metric versions of both the k-GMST and the group Steiner tree problems are
NP-hard and cannot be approximated within any constant factor [23, 32]. Gabow et al. [20]
studied the problem of finding a path, from a source to a destination in a graph, that passes
through at most one vertex from every given pair of vertices. Arkin et al. [4] studied the
multiple-choice minimum-diameter problem which is to select at least one element from
each cluster to minimize the diameter of the chosen elements. The k-GBST also lies in the
concept of imprecision in computational geometry where each input point is provided as a
region of uncertainty (also known as neighborhood) and the exact position of the point may
be anywhere in the region; see e.g. [8, 11, 17, 29, 30, 31].

Both the k-GBST and the k-GMST have real-world applications for example in the
field of telecommunications, designing metropolitan area networks, interconnecting local
area networks, and determining location of regional service centers (e.g., stores, warehouses,
agricultural settings, distribution centers). For a detailed explanation of these applications
and for more examples we refer the interested reader to the paper of Myung et al. [32] and
the recent survey by Pop [36].

(3) The k-PBST problem falls in the class of partitioning a set into subsets such that the
substructures (computed on subsets) are balanced. Balanced partitioning of the input has a
long history and gives rise to interesting theoretical problems. For example in the k-partition
traveling salesperson problem we are given k salespersons and the goal is to visit every city
by exactly one salesperson and minimize the distance traveled by the salesperson making the
longest journey [5, 6, 35].

The problem of k-balanced partitioning of a graph asks for partitioning the vertices of
the graph into k subsets such that the induced subgraph on each subset is connected and
the maximum cardinality of the subsets is minimized. Dyer and Frieze [18] showed that
this problem is NP-hard; they also showed the hardness of many variations of this problem.
Chlebíková [14] presented constant-factor approximations for k = 2, 3, and Chen et al. [13]
presented a k/2-approximation for k > 4. The max-min version of this problem is also
studied [14, 40].

Motivated by a problem from the shipbuilding industry, Andersson et al. [1] studied
the k-partition minimum spanning tree (k-PMST) problem where the goal is to partition
an input point set into k subsets such that the length of the longest MST on the subsets
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3:4 Approximating Bottleneck Spanning Trees on Partitioned Tuples of Points

is minimized. As noted in [27] (and references therein) the k-PMST problem also arises
in multi-vehicle scheduling, task sequencing, and political districting. Andersson et al. [1]
showed that the k-PMST problem is NP-hard even for k = 2 in the Euclidean metric in the
plane, and presented (4/3 + ε) and (2 + ε) approximations for k = 2 and k > 3, respectively.
Karakawa et al. [27] studied this problem in higher dimensions. The k-PMST problem has
also been studied in trees and cactus graphs under the name “minmax subtree cover” problem
[33, 34].

1.2 Our contributions
We study the k-DBST, k-GBST, and k-PBST problems in metric spaces (where distances
satisfy the triangle inequality). We show the hardness as well as approximation algorithms for
these problems. We present our results for the simplest version where k = 2 (as it is easier to
understand) and then extend them for larger k. Some of our results (such as Theorems 2, 7,
and 11) are of independent interest and present self-contained combinatorial arguments.

The 2-DBST problem is known [24] to be NP-hard and inapproximable by a factor better
than 2. We present a 4-approximation algorithm for this problem. This improves the
previous best known ratio of 9 due to Arkin et al. [2]. We extend our algorithm and
achieve a (3k − 2)-approximation for the k-DBST for any k > 2 (Theorem 3). To achieve
these algorithms we demonstrate a set labeling technique (Theorem 2) as an implication
of Hall’s marriage theorem and a theorem of Kőnig [22].
The difficulty of the 2-GBST problem lies in choosing representative points from clusters;
once these points are selected, the problem is reduced to the standard BST problem. We
show that it is NP-hard to approximate the 2-GBST problem by a factor better than 2
using a reduction from 3-SAT (Theorem 4), and present a 3-approximation algorithm for
this problem (Theorem 6). In some part of our algorithm we show the following result
which is of independent interest (Theorem 7): Given a tree T1 and a partitioning of its
nodes into clusters of size at most two, we can obtain a tree T2 that contains exactly one
node from each cluster and the length of its edges is at most 3 in the metric1 of T1; the
upper bound 3 is the best achievable.
We show that it is NP-hard to approximate the k-PBST problem by a factor less than 2
for any k > 2 (Theorem 8) using a reduction from the 2-balanced partitioning of a graph
[18]. We present an α-approximation algorithm for this problem (Theorem 10) where
α = 2 for k = 2, 3 and α = 3 for k > 4. Towards obtaining these approximation ratios we
present tight upper bounds on the edge lengths of k equal-size disjoint trees that can be
obtained from the nodes of a given tree (Theorem 11); the edge lengths are measured in
the metric of the given tree. This result is of independent interest.

A straightforward implication of our hardness proofs and that of Johnson [24] is that
the non-metric versions of the above problems cannot be approximated within any constant
factor.

Extension to bottleneck TSP tours. If instead of trees in the above problems we seek
TSP tours that minimize the largest edge length, then our algorithms simply extend to obtain
approximate solutions with factors that are three times those for bottleneck trees. This can

1 In this metric the distance between two nodes u and v in a tree T is the number of edges in the unique
path between them in T .
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be done via a known result that the cube2 of every connected graph has a Hamiltonian cycle,
and such a cycle can be computed in polynomial time [26, 28]; this is also hinted in [15,
Exercise 37.2.3]. To use this result, we first obtain an α-approximate solution, namely B, for
the corresponding BST problem (using our BST algorithms) and then we find TSP tours,
namely T , in the cube of B. By the triangle inequality the largest edge-length in the cube
graph, and in particular in T , is at most three times the largest edge-length in B. Notice that
in all above problems the largest edge length in any optimal BST solution is a lower bound
for the largest edge length in any optimal TSP solution. Thus T would be a 3α-approximate
solution for the TSP. For example our 4-approximation algorithm for the 2-DBST can be
extended to obtain a 12-approximation for two disjoint TSP tours that minimize the largest
edge length; this improves the previous approximation ratio of 18 due to Arkin et al. [2].

Notation. The largest edge length in a tree T is referred to as the bottleneck of T and is
denoted by λ(T ). We denote the distance between two points p and q in a metric space by
|pq|. Conceptually, a point set P in a metric space can be viewed as a metric graph, i.e.,
as a complete edge-weighted graph with vertex set P where the weight w(e) of each edge
e = (p, q) is equal to the distance between p and q, that is w(e) = |pq|.

2 The k-DBST problem

Let k > 2 be an integer. In this section we present an approximation algorithm for the
k-DBST problem: Given kn points in some metric space that are partitioned into k-tuples,
we want to find k disjoint trees each containing exactly one point from each tuple and
minimize the largest edge length (over all the k trees). We first present our approximation
algorithm for k = 2 as it is easier to understand. Then we extend the algorithm to larger k.
Our algorithm benefits from the following remarkable result of Kőnig which is stated in [22].

I Theorem 1 (Kőnig, 1916). Let S be any set with kn elements that is partitioned, in two
different ways, into n subsets each with k elements, namely A1, . . . , An and B1, . . . , Bn. Then
there exist n elements of S, namely r1, . . . , rn, and a permutation π of {1, . . . , n} such that
ri ∈ Ai ∩Bπ(i) for all i ∈ {1, . . . , n}.

Example. Let k = 3, n = 4, S = {1, 2, . . . , 12}, and consider two partitions of S
A1 = {1, 2, 3}, A2 = {4, 5, 6}, A3 = {7, 8, 9}, A4 = {10, 11, 12}
B1 = {4, 9, 12}, B2 = {2, 8, 11}, B3 = {1, 3, 5}, B4 = {6, 7, 10}.

Then by taking r1 = 1, r2 = 6, r3 = 8, r4 = 12, and π = (3, 4, 2, 1) we get that
r1 ∈ A1 ∩B3, r2 ∈ A2 ∩B4, r3 ∈ A3 ∩B2, r4 ∈ A4 ∩B1.

Hall (1935) showed a more general version of Kőnig’s theorem (where subsets can have
different sizes) as an implication of his famous result [22]—today known as the Hall’s marriage
theorem. The set R = {r1, . . . , rn} in Theorem 1 is called a complete system of representatives
for subsets Ai (and also for subsets Bi). The following theorem (which is a generalized
version of Lemma 8 in [2]) is an implication of Kőnig’s theorem.

2 The cube of a graph G has the same vertices as G, and has an edge between two distinct vertices if and
only if there exists a path, with at most three edges, between them in G.
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3:6 Approximating Bottleneck Spanning Trees on Partitioned Tuples of Points

I Theorem 2. Let S be a set with kn elements that is partitioned, in two different ways,
into n subsets each with k elements, namely A1, . . . , An and B1, . . . , Bn. Then, it is pos-
sible to label all elements of S with k distinct labels such that the k elements in each of
A1, . . . , An, B1, . . . , Bn have k distinct labels. Moreover, such a labeling can be found in
polynomial time.

Proof. By Kőnig’s theorem there exists a subset R = {r1, . . . , rn} of S that is a complete
system of representatives for subsets Ai and for subsets Bi. Such a system R can be
found as follows. Construct a bipartite graph G = (V,E) with 2n vertices such that
V = {A1, . . . , An, B1, . . . , Bn} and there is an edge between Ai and Bj if and only if
Ai ∩ Bj 6= ∅. According to Hall’s marriage theorem [9, 22] G has a perfect matching M
(with n edges) which can be found in polynomial time. For every edge (Ai, Bj) in M pick an
arbitrary representative element in Ai ∩Bj . These n representatives form R.

Label all elements ofR by l1. Then remove the vertices ofR from S and from corresponding
subsets Ai and Bj . As a result we obtain a new set S with (k−1)n elements and two distinct
partitions of S each with n subsets of size k − 1. By applying Kőnig’s and Hall’s theorems
we can find another complete system of representatives, and label them l2. Repeating the
above process achieves a desired labeling l1, . . . , lk. J

In the example above we can label the elements of S by k (= 3) labels l1, l2, l3 where
(with a slight abuse of notation) l1 = {1, 6, 8, 12}, l2 = {2, 5, 9, 10}, and l3 = {3, 4, 7, 11} such
that all elements in each Ai and Bi have different labels.

2.1 A 4-approximation for the 2-DBST
In this section we present a 4-approximation algorithm for the 2-DBST problem. Let P be a
set of 2n points in a metric space that is partitioned into n tuples A1, . . . , An each with two
points. Let λ∗ denote the bottleneck of a fixed optimal solution (consisting of two trees). We
show how to find two disjoint trees R and B with edges of length at most 4λ∗. To simplify
our description we assume that the nodes of R and B are colored red and blue, respectively.

We start by computing a minimum spanning tree T of P , which is also a bottleneck
spanning tree. Let e be a longest edge of T , that is λ(T ) = w(e). Let T1 and T2 be the
two trees obtained by removing e from T . Notice that max{λ(T1), λ(T2)} 6 w(e). If each
Ai has a point in T1 and a point in T2, then we claim that R = T1 and B = T2 form an
optimal solution because if the fixed optimal solution contains an edge between a node of T1
and a node of T2 then the length of that edge is at least w(e) which implies that λ∗ > w(e).
Therefore max{λ(R), λ(B)} 6 λ∗.

Now assume that both points of some tuple Ai belong to say T1. In any feasible solution,
one point of Ai is red and the other is blue. Then regardless of the coloring of the nodes
of T2, the optimal solution should contain an edge between a node of T1 and a node of T2.
Thus λ∗ > w(e). We are going to color the nodes of T (which are the points of P ) red and
blue and then obtain R and B in such a way that max{λ(R), λ(B)} 6 4 · λ(T ). This will
imply that max{λ(R), λ(B)} 6 4λ∗.

We root T at a leaf q. Then we partition the nodes of T into n bucketsB1, . . . , Bn each with
two vertices. The partitioning is done iteratively in a bottom-up fashion as follows. Consider
a deepest leaf l and let v be its parent. Let u1, u2, . . . , uj be the children of v where u1 = l

as in Figure 2(a). If j is even then we create j/2 buckets {u1, u2}, {u3, u4}, . . . , {uj−1, uj},
and then remove u1, . . . , uj from T . If j is odd then we create (j + 1)/2 buckets {v, u1},
{u2, u3}, {u4, u5}, . . . , {uj−1, uj}, and then remove v, u1, . . . , uj from T . Then we repeat the
above process until q and its only child form a bucket. We denote this last bucket by Bn.
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v

u1 u2 u3 u4 uj

l

v

u1 u2 u3 ujuj−1 uj−1

l

ri

pi pi

ri

(a) (b)

Figure 2 (a) Creating buckets. (b) Construction of R; dashed edges represent δi.

The total number of buckets is n because T has 2n nodes initially. Between any two nodes
in the same bucket there exists a path of length at most 2 in T , because the two nodes are
either siblings or a child and its parent.

Now that we have two partitions A1, . . . , An and B1, . . . , Bn of P , we color (or label) the
points of P by two colors, red and blue, as in Theorem 2. Thus in each Ai and each Bi we
get a red point and a blue point. We construct the tree R by interconnecting the red points
of buckets as follows; see Figure 2(b): Consider each bucket Bi with i ∈ {1, . . . , n− 1} and
let ri denote its red point.

(i) If the parent of ri is not in Bi, then we connect ri to the red point of its parent’s bucket.
(ii) If the parent of ri is in Bi, then we connect ri to the red point of its grandparent’s

bucket.

Since each ri is connected to the red point in its parent’s or grandparents’s bucket, there is a
unique path between ri and rn (the red point of the bucket Bn which contains the root q).
Thus R is a tree. We construct the tree B on the blue points in a similar fashion. We claim
that R and B are the desired trees. Since each Ai contains a red point and a blue point (by
Theorem 2), each of R and B contains exactly one point from Ai. Thus R and B form a
feasible solution for the problem.

Analysis of the approximation ratio. We show that λ(R) 6 4 · λ(T ); an analogous
argument holds for B. Root R at the red point rn of Bn. Consider any red node ri in R
where i ∈ {1, . . . , n − 1}. Recall that ri ∈ Bi. Let pi be the parent of ri in R. It suffices
to show that |ripi| 6 4 · λ(T ). Consider the unique path δi between ri and pi in T . See
Figure 2(b). If ri was connected to pi in case (i) then δi has at most 3 edges. If ri was
connected to pi in case (ii) then δi has at most 4 edges. Therefore |ripi| 6 w(δi) 6 4 · λ(T ).

2.2 A (3k − 2)-approximation for the k-DBST
Here we extend our 4-approximation algorithm of the previous section to get a (3k − 2)-
approximation for the k-DBST problem. We should note that (although it is not mentioned
explicitly in their paper) Theorem 7 from Arkin et al. [2] combined with their Lemma 8
already gives a (6k − 3)-approximation for the k-DBST problem.

Let P be a set of kn points that is partitioned into n tuples A1, . . . , An each with k

points. Let λ∗ denote the bottleneck of a fixed optimal solution (consisting of k trees). We
show how to color the points in each Ai by k colors c1, . . . , ck, and to obtain a tree Ti on all
points with color ci such that λ(Ti) 6 (3k − 2)λ∗.

Let T be a minimum spanning tree of P . Root T at a leaf q. We partition the nodes
of T into n buckets B1, . . . , Bn each with k nodes. The partitioning is done iteratively in a
bottom-up fashion. We describe it for obtaining bucket Bj . For each node v in the current
tree T , let N(v) denote the number of nodes in the subtree rooted at v, including v itself.

CGT



3:8 Approximating Bottleneck Spanning Trees on Partitioned Tuples of Points

Then we look at all nodes v for which N(v) is at least k. Among those, pick a node v for
which N(v) is minimum. Then N(v) is at least k and each of its children has a subtree of
size at most k − 1. Now we construct Bj : Take a leaf in the subtree of v, add it to Bj , and
remove it from the tree. Repeat this until Bj has size k.

v

u

Bj

ri

pi

parent

v

Bj

ri

pi

parent

v ∈ Bj v /∈ Bj

Notice that between any two points in the subtree
of v there is a path in T with at most 2k − 2 edges. We
say that v is the representative of Bj . Moreover, we
define the parent of Bj to be the bucket containing v (if
v /∈ Bj) or the bucket containing v’s parent (if v ∈ Bj).
With the two partitions A1, . . . , An and B1, . . . , Bn in
hand, we color the points of P by k colors c1, . . . , ck as
in Theorem 2. Thus in each Ai and in each Bi we get
k distinct colors. For each color ci we construct Ti as
follows: for each bucket Bj we connect its point with
color ci (say point ri) to the point with color ci in Bj ’s parent bucket (say point pi). To prove
the approximation ratio it suffices to show that between ri and pi there is a path of length at
most 3k− 2 in T . There is a path of length at most k− 1 from ri to the representative of Bj ,
say v. If v ∈ Bj then there is an edge from v to a node u in Bj ’s parent bucket, and there is
a path of length at most 2k − 2 between u and pi in the parent bucket. If v /∈ Bj then v is
in Bj ’s parent bucket in which case there is a path of length at most 2k − 2 between v and
pi in the parent bucket. The following theorem summarizes our result.

I Theorem 3. There exists a polynomial-time (3k − 2)-approximation algorithm for the
k-disjoint bottleneck spanning tree problem on points in a metric space.

Remark. The length 2k− 2 within each bucket of size k is the best achievable. For example
consider a tree rooted at a node v with k + 1 subtrees each is a path with k − 1 nodes. This
tree has k2 nodes in total which will be partitioned into k buckets of size k. Since there are
k + 1 leaves at least two of them lie in the same bucket (by the pigeonhole principle), and
thus the distance between them will be 2k − 2.

3 The 2-GBST problem

In this section we study the 2-GBST problem: Given a set P of n points in some metric
space that is partitioned into clusters of size at most 2, find a tree that contains exactly
one point from each cluster and minimizes the largest edge length. The 2-GBST problem is
NP-hard; this is implied from the hardness of the so-called rainbow minmax gap problem [3]
(given a set of pairs of points on a line, select exactly one point from each pair such that the
maximum Euclidean distance between consecutive selected points is minimized).

In this section we first prove the inapproximability of the metric 2-GBST problem and
then present an approximation algorithm.

I Theorem 4. Unless P = NP, there is no polynomial-time algorithm that approximates the
metric 2-generalized bottleneck spanning tree problem by a factor better than 2.

Proof. We use a reduction from the 3-SAT problem: given a boolean expression E as the
conjunction of clauses, each of which is the disjunction of three distinct literals (a variable or
its negation), decide whether E is satisfiable.
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p1

p2

pm

v1 v1

v2

v3

vn

v2

v3

vn

r

C1 :v1∨v2∨vn

Cm :v2∨v3∨vn

Given any instance of the 3-SAT problem consisting
of an expression E with m clauses C1, . . . , Cm and n
variables x1, . . . , xn we construct an instance of the
2-GBST problem consisting of a metric graph G as
follows (the vertices of G represent points in a metric
space). For each clause Cj create a cluster with one
vertex pj . For each variable xi create a cluster with
two literal vertices vi and vi that correspond to positive
literal xi and negative literal xi, respectively. Create a
cluster with one vertex r. To simplify our description
we use vertices and their corresponding clauses or
literals interchangeably. Connect each literal vertex, by edges of weight 1, to vertices pj of
all clauses Cj that they appear in. Connect r to all literal vertices by edges of weight 1.
The edges that are drawn in the figure have weight 1. All other edges of G have weight 2
(notice that G is a complete graph). With this weight assignment, G is a metric graph with
m+ 2n+ 1 vertices. We show that E is satisfiable if and only if G has a generalized spanning
tree with edges of weight 1. This would imply the statement of the theorem because (by
contraposition) any approximation algorithm with factor less than 2 would give a tree with
edges of weight 1, and thus could solve the 3-SAT problem.

First suppose that E is satisfiable, and consider a truth assignment of variables that
satisfies E. We obtain a tree T as follows. For the vertex set of T we select r, all vertices pj ,
and each vi (if xi is true) or vi (if xi is false). For the edge set of T we connect r to every
selected literal vertex, and we connect each pj to exactly one selected literal vertex that
satisfies Cj . The tree T is a feasible solution for the 2-GBST problem on G (as it contains
exactly one vertex from each cluster) and all its edges have weight 1.

For the other direction assume that T is a generalized spanning tree of G with edges of
weight 1. The tree T should contain r and all vertices pj because they are the only vertices
in their clusters. For each pj only edges of G that connect pj to literal vertices have weight
1. Thus each pj is connected to at least one literal vertex in T . Moreover T contains exactly
one vertex from each cluster {vi, vi} of literal vertices. Therefore, by setting xi as true (if T
contains vi) or false (if T contains vi) we obtain a satisfying assignment for E. J

If in the proof of Theorem 4 we replace all edge-weights of 2 with an arbitrary large
constant, we obtain the following corollary.

I Corollary 5. It is NP-hard to approximate the non-metric 2-generalized bottleneck spanning
tree problem within any constant factor.

If we were interested in generalized minimum spanning trees, then our reduction in the
proof of Theorem 4 would also give a short proof for the NP-hardness of the metric 2-GMST
problem: It can be verified that E is satisfiable if and only if G has a generalized spanning
tree of total weight m + n. We note the existence of (somewhat involved) proofs for the
hardness of the Euclidean 2-GMST problem; see the thesis of Fraser [19, page 140] (reduction
from maximum 2-SAT), the paper of Ataei et al. [25] (reduction from planar 3-SAT), and a
recent result of Dey et al. [16] (reduction from maximum 2-SAT).

3.1 A 3-approximation for the 2-GBST
Here we present our 3-approximation algorithm for the 2-GBST problem on a set P of n
points in a metric space that is partitioned into m clusters C1, . . . , Cm, each of size at most 2.
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3:10 Approximating Bottleneck Spanning Trees on Partitioned Tuples of Points

Notice that n/2 6 m 6 n. Let λ∗ be the bottleneck of a fixed optimal solution. In a nutshell,
our algorithm works as follows. First we compute a tree T1 that contains at least one point
from each cluster and its bottleneck is at most λ∗. Then we obtain a tree T2 from T1 that
contains exactly one point from each cluster and its bottleneck is at most three times λ(T1).
Therefore

λ(T2) 6 3 · λ(T1) 6 3 · λ∗,

which means that T2 is a 3-approximate solution for the 2-GBST problem. In the rest of this
section we show how to construct T1 and T2. Our algorithm for computing T2 from T1 is of
independent interest. The running time of our algorithm is dominated by the computation
of a minimum spanning tree. The following theorem summarizes our result.

I Theorem 6. There exists a polynomial-time 3-approximation algorithm for the 2-generalized
bottleneck spanning tree problem on points in a metric space.

3.1.1 Construction of T1

First we make an empty graph G over the n points of P . Then we add edges between the
points of G in a non-decreasing order of the pairwise distances, and stop as soon as G has a
connected component, say C, that contains at least one point from each cluster. All edges of
C are of length at most λ∗. Now we compute T1 as an arbitrary spanning tree of C.

Remark. When the running time is a concern, one can guess λ∗ in a binary search fashion
to speed up the algorithm. Also, it is possible to compute T1 as a subtree of the minimum
spanning tree of P . In this case, the total running time is dominated by the computation
of the minimum spanning tree; the details are skipped as we are not concerned about the
running time here.

3.1.2 Construction of T2

In this section we prove the following theorem.

I Theorem 7. Given a tree T1 and a partitioning of its nodes into clusters of size at most
two, we can obtain a tree T2 that contains exactly one node from each cluster and the length
of its edges is at most 3 in the metric of T1. The upper bound 3 is the best achievable.

First we show that the distance 3 (in the metric of T1) is the best achievable upper bound.
Figure 3 illustrates a tree T1 as a path with eight nodes. The nodes of T1 are partitioned
into five clusters {a}, {b1, b2}, {c1, c2}, {d1, d2}, {e}. To obtain T2 we have to choose points a
and e because they are the only points in their clusters. Due to symmetry we may choose b1
from cluster {b1, b2}. In this case if we do not choose d2 then the distance of e to its closest
point in T2 would be at least 3, thus we may assume d2 is chosen. In this setting, if we
choose c1 (as depicted in Figure 3) then the distance between c1 and d2 will be 3, and if we
choose c2 then the distance between b1 and c2 will be 3. Thus, in all cases we get an edge of
length 3 in T2.

Now we present an algorithm for obtaining T2. Our algorithm consists of two phases: In
the first phase we select the nodes of T2 and in the second phase we define its edges. To
select the nodes of T2, we visit the nodes of T1 in some order and select exactly one node
from each cluster. While visiting the nodes of T1 we refer to an unvisited node by open node,
to a visited node that is selected by selected node, and to a visited node that is not selected
by burned node.
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a b1 b2c1 d2 ec2d1

Figure 3 Illustration of the lower bound 3. Dashed lines represent two nodes belonging to the
same cluster. The black vertices are chosen for T2.

Node selection. See Figure 4(a) for an illustration of this phase. At the beginning all
nodes of T1 are open. First we visit and select all nodes of clusters of size one (which must
be in T2). Now we are going to select exactly one node from each cluster of size two. We
root T1 at an arbitrary node. Then we repeat the following process until all nodes of T1 are
visited. The process starts from an open node. At the beginning if the root is open then we
start from the root, otherwise start from an arbitrary open node. In Figure 4(a) the nodes
are labeled by the order they have been visited; the nodes of clusters of size one (which are
already visited) are labeled with 0s.

Process: Let a1 denote the starting open node (which belongs to a cluster of size
two). Select a1 and burn its twin say a2. If the parent of a2 is open then repeat
the process starting from the parent. If the parent is not open (selected or burned)
then check the children of a2. If a2 has some open child then repeat the process
starting from an open child. If a2 has no open child (or if a2 does not have any
child at all) then repeat the process starting from an arbitrary open node if such a
node exists otherwise terminate the node selection phase.

Defining edges. The node selection algorithm selects exactly one node from each cluster.
At the end of the selection algorithm, every node is either selected or burned (there is no
open node). We claim that for each selected node a at any level of T1 (except for the root)
there exists a selected node b at a higher level such that the path between a and b in T1 has
at most three edges, i.e. the distance between a and b is at most 3 in the metric of T1. For
each selected node a, we add the edge (a, b) to T2. As each a is connected to a node in a
higher level, all nodes of T2 are connected (via the root) and hence it is a tree.

1
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0

0
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6
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9 10

11

12

13

14

a2

a′1
a1

a

a3

(a) (b)

Figure 4 (a) Node selection (dashed lines represent two nodes in the same cluster): red squares
(belong to clusters of size one) and black nodes (belong to clusters of size two) are selected whereas
the white nodes (paired with black nodes) are burned. (b) Illustration for the edge length of T2.
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3:12 Approximating Bottleneck Spanning Trees on Partitioned Tuples of Points

To verify our claim let a1 be the parent of a, as in Figure 4(b). If a1 is selected then
set b = a1 and we are done. Assume that a1 is burned. Let a2 be the parent of a1. If a2
is selected then set b = a2 and we are done. Assume that a2 is also burned. Notice that
a2 was burned before a1 was, because otherwise the selection process would select a2 right
after burning a1. Right after burning a2 the process has checked the parent of a2 which we
denote by a3. If a3 was open then it would have been selected, and thus we set b = a3 and
we are done. If a3 was burned then the process would have checked the children of a2 and
have selected a child a′1 because a2 had an open child which was a1; this case is depicted in
Figure 4(b). In this case we set b = a′1 and we are done.

Remark. It might be tempting to use our 3-approximation algorithm for the 2-GBST
problem to obtain a 3-approximation for the 2-DBST problem, say by coloring the selected
nodes red and the burned nodes blue. This may not be an easy task because each time the
process starts by selecting an arbitrary open node, these selected nodes could form a long
path between burned nodes.

4 The k-PBST problem

Let k > 2 be an integer. In this section we study the k-PBST problem: Given kn points in
some metric space, find k disjoint trees each containing exactly n points and minimize the
largest edge length (over all trees). First we prove the hardness of this problem, and then we
present an approximation algorithm. For n = 2 the problem is equivalent to the bottleneck
matching problem which can be solved in polynomial time; see for example [12]. In the rest
of this section we assume that n > 3.

I Theorem 8. Unless P = NP, there is no polynomial-time algorithm that approximates the
metric k-partition bottleneck spanning tree problem by a factor better than 2, for any k > 2.

Proof. We use a reduction from the NP-hard problem of partitioning the vertex set of a
graph G = (V,E) into k (2 6 k 6 |V |/3) equal-size subsets V1, . . . , Vk such that the subgraph
induced by each Vi is connected [18]. Let G′ be the complete edge-weighted graph obtained
by adding edges to G and then assigning weight 1 to every edge of E and weight 2 to every
other edge. Notice that G′ is a metric graph with |V | vertices. It is easily seen that the
partition problem on G has a solution if and only if G′ contains k equal-size disjoint spanning
trees with edges of weight 1. The inapproximability claim follows because any approximation
algorithm with factor less than 2 would give spanning trees with edges of weight 1, which
would solve the partitioning problem on G. J

If in the proof of Theorem 8 we replace all edge-weights of 2 with an arbitrary large
constant, we obtain the following corollary.

I Corollary 9. It is NP-hard to approximate the non-metric k-partition bottleneck spanning
tree problem within any constant factor, for any k > 2.

4.1 Approximating the k-PBST
Now we present an α(k)-approximation algorithm for the k-PBST problem, where α(k) = 2
for k = 2, 3 and α(k) = 3 for k > 4. In view of Theorem 8 the factor 2 is the best achievable
for k = 2, 3. Given kn points in a metric space, we show how to construct k trees each
containing exactly n points and their largest edge length is at most α(k) · λ∗, where λ∗ is
the bottleneck of a fixed optimal solution.
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We start by computing a minimum spanning tree T of all points. Let e be a longest edge
of T , that is λ(T ) = w(e). Let T ′ and T ′′ be the two trees obtained by removing e from T .
If the number of nodes in T ′ and in T ′′ are multiples of n, say i · n and j · n where i+ j = k,
then we recursively construct i trees on the nodes of T ′ and j trees on the nodes of T ′′.

Assume that the number of nodes in T ′ and T ′′ are not multiples of k. Then the optimal
solution must have an edge between a node of T ′ and a node of T ′′. The length of this edge is
at least w(e), and thus λ∗ > λ(T ). Then by Theorem 11 we obtain k trees on the nodes of T
such that their edge lengths are at most α(k) · λ(T ). We emphasize that the edge lengths are
measured in the metric of T . The following theorem summarizes our result in this section.

I Theorem 10. There exists a polynomial-time α-approximation algorithm for the k-partition
bottleneck spanning tree problem on kn points in a metric space where α = 2 for k = 2, 3 and
α = 3 for k > 4. The approximation factor 2 for k = 2, 3 is the best achievable in polynomial
time.

4.2 Balanced tree partitioning theorem
In this section we prove the following theorem. We denote the number of nodes of a tree T
by |T |.

I Theorem 11. Given a tree T with kn nodes we can obtain k disjoint trees T1, . . . , Tk each
containing exactly n nodes of T such that

1. If k = 2 or k = 3 then the length of edges in each Ti is at most 2 in the metric of T .
2. If k > 4 then the length of edges in each Ti is at most 3 in the metric of T .

The upper bounds 2 and 3 for the edge lengths are the best achievable.

For the proof we first show that the upper bounds 2 and 3 are the best achievable. Then
we present algorithms that achieve desirable trees T1, . . . , Tk with the claimed edge lengths.
The lengths mentioned in our proof are in the metric of T .

Upper bounds. It is easily seen that the upper bound of 2 is the best achievable (for
k = 2, 3) for example when T is a star with 3 and 5 leaves, respectively.

v

R

k − 1

k + 1

To verify that 3 is the best achievable upper bound (for
k > 4) consider a tree T rooted at a node v with k+ 1 subtrees
each is a path with k − 1 nodes; see the figure to the right for
k = 4. The tree T has k2 nodes. Let R be the set of k + 1
nodes that are at distance 1 from v. Each node of R represents
a path connected to v. Now consider any set of k disjoint
trees T1, . . . , Tk each consisting of k nodes of T . We show, by
contradiction, that the length of an edge in some Ti is at least 3. After a suitable relabeling
assume that v belongs to T1. Then each tree Ti with i ∈ {2, . . . , k} should have nodes from at
least two of the paths connected to v because each path itself has k − 1 nodes. In particular
Ti should contain the representatives of these paths because otherwise Ti would have an edge
of length at least 3. Thus each Ti contains at least two distinct nodes from R. This implies
that |R| > 2(k − 1). Combining this inequality with the fact that |R| = k + 1, implies that
k 6 3 which is a contradiction.

Algorithm for k > 4. Our algorithm for k > 4 uses the fact that the cube of T is
Hamiltonian. It is implied from a result of Karaganis [26] and independently from a result of
Lesniak [28] that in polynomial time we can find a Hamiltonian path on nodes of T with
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3:14 Approximating Bottleneck Spanning Trees on Partitioned Tuples of Points

edges of length at most 3. By cutting this path into k equal-size pieces we obtain k desired
trees.

Remark. One could simply obtain a 2-approximation if the square3 of T has a Hamiltonian
path. However, this property holds only for a very restricted class of trees called horsetail
[39].

r

b

r

b

⇒

Figure 5 Obtaining trees R (in red) and B (in blue) from T (in black). The red nodes marked
with × have been recolored blue to ensure that the tree has the same number of red and blue nodes.

Algorithm for k = 2. We show how to find two disjoint trees R and B each containing
exactly n nodes of T and the length of their edges is at most 2. To simplify our description
we assume that the nodes of R and B are colored red and blue, respectively.

We root T at a leaf r, as in Figure 5. Then r has only one child which we denote by b.
Assume that r is at level 1, its child b is at level 2, the children of b are at level 3, and so on.
Color all nodes at odd levels red and color all nodes at even levels blue. If the number of
nodes of one color, say red, is more than n then we iteratively recolor the red nodes from the
bottomost level by blue. In the end we get n red nodes and n blue nodes. We compute a
rooted tree R on red nodes by connecting each red node to its grandparent, and compute a
rooted tree B on blue nodes by connecting each blue node to its parent or grandparent that
is blue, as in Figure 5. Notice that R is rooted at r and B is rooted at b. Since each red
and blue node is connected to its parent or grandparent (in T ), every edge of R and B has
length at most 2. Therefore {R,B} is a 2-approximate solution.

Remark. It is easily seen that the above algorithm can be extended to obtain trees R and
B of different sizes (as long as |R|+ |B| = |T |) with the same upper bound of 2 on their edge
lengths.

Algorithm for k = 3. Notice that T has 3n nodes. We show how to find three disjoint trees
R, G, and B each containing exactly n nodes of T and the length of their edges is at most 2.

We root T at a leaf node. For each node v in T , let N(v) denote the number of nodes in
the subtree rooted at v; the node v is counted. Then we look at all nodes v for which N(v)
is at least n. Among those, pick a node v for which N(v) is minimum. Then N(v) is at least
n and each of its children has a subtree of size at most n− 1. Observe that v is not the root.

If N(v) = n then we take the subtree rooted at v as R, remove R from T , and then obtain
two trees G and B from the new tree T (which now has 2n nodes) using our algorithm for
k = 2.

3 The square of a graph G has the same vertices as G, and has an edge between two distinct vertices if
and only if there exists a path, with at most two edges, between them in G.
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Assume thatN(v) > n. Then v has at least two children which we denote by u1, u2, . . . , um
where m > 2. Let Ui denote the subtree rooted at ui. Take the smallest index j in {1, . . . ,m}
for which |U1|+ · · ·+ |Uj | > n. Then |U1|+ · · ·+ |Uj−1| < n. Let n′1 = n−(|U1|+ · · ·+ |Uj−1|).
Let Uvj be the subtree consisting of Uj and the node v together with the edge connecting v
to uj . We use our algorithm for k = 2 to obtain from Uvj two trees T ′j and T ′′j of sizes n′1
and |Uvj | − n′1 = |Uj |+ 1− n′1, respectively, such that T ′j is rooted at uj , T ′′j is rooted at v,
and their edge lengths are at most 2; see Figure 6. Now we obtain R by taking the trees
U1, . . . , Uj−1, and T ′j and interconnecting their roots to form one tree. Notice that R has n
nodes and its edge lengths are at most 2. We remove the nodes of R from T . We also remove
all edges of T that lie in Uj , and add the edges of T ′′j (which are of length at most 2) to T .
Notice that |T ′′j | < n because it does not have uj (although it contains v). To obtain G and
B we consider the following cases depending on the number N(v) in the new tree T which
has 2n nodes:

uj uj+1u1

U1

um

Um

v

uluj−1

Uj Ul

ul−1

T ′j T ′′j T ′l T ′′l

Figure 6 Obtaining trees R (in red), G (in green), and B (in blue) from T (in black). The trees
T ′

j , T ′′
j , T ′

l , and T ′′
l are shown with bold edges.

N(v) = n. In this case we take the subtree rooted at v as G, remove G from T , and then
take the resulting tree T (which now has n nodes) as B.
N(v) < n. We walk up the tree T from v and stop at the first node w for which N(w) > n.
Similar to the process of obtaining R from the subtree of v, we obtain G from the subtree
of w. This time we denote the subtree of w that contains v by U1. This ensures that the
edges of T ′′j will appear in G without getting longer, because the subtree of a potential
child w′ of w with N(w′) > n must be disjoint from T ′′j . After obtaining G, the remaining
part of T will form the tree B.
N(v) > n. See Figure 6. In this case we repeat a procedure similar to what we did to obtain
R. Let l ∈ {j + 1, . . . ,m} be the smallest index for which |T ′′j |+ |Uj+1|+ · · ·+ |Ul| > n.
Notice that Uj+1 exists because N(v) > n. Then |T ′′j |+ |Uj+1|+ · · ·+ |Ul−1| < n. Let
n′2 = n− (|T ′′j |+ |Uj+1|+ · · ·+ |Ul−1|) + 1 (the addition of 1 will become clear shortly).
Let Uvl be the subtree consisting of Ul and the node v together with the edge connecting
v to ul (notice that v also belongs to T ′′j ). We use our algorithm for k = 2 one more
time to obtain from Uvl two trees T ′l and T ′′l of sizes n′2 and |Uvl | − n′2 = |Ul|+ 1 − n′2,
respectively, such that T ′l is rooted at v, T ′′l is rooted at ul and their edge lengths are
at most 2. Now we obtain G by taking the trees T ′′j , Uj+1, . . . , Ul−1, and T ′l and then
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interconnecting their roots to form one tree. The tree G has n nodes (without double
counting v which is in both T ′′j and T ′l ) and its edge lengths are at most 2. We obtain
the third tree, i.e. B, as follows. We remove the nodes of G from T . By interconnecting
the roots of T ′′l , Ul+1, . . . , Um together and then connecting um to the parent of v (which
exists) we obtain the tree B.

Remark. To see why the above procedure cannot be extended to the case of k = 4,
assume that N(v) > n after the removal of G from T . As v is already used for G we
cannot reuse it to construct another tree, and hence we will be forced to introduce longer
edges.

5 Conclusions

A natural open problem is to improve the presented approximation ratios further. Most of
our approximation ratios consider the largest edge length of the standard BST as the lower
bound. A better lower bound for the largest edge length of an optimal solution (not the
standard BST) would improve the approximation ratios. It would be interesting to explore
whether our algorithm for the 2-GBST problem could be extended to an O(k)-approximation
algorithm for the k-GBST problem. Also it would be interesting to verify whether the
approximation ratio of 3 for the k-PBST problem (k > 4) is tight, knowing that 2 is a lower
bound.
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