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Abstract
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1 Introduction

A classical result in convex geometry by Helly [25] states that if a family of convex sets in Rd
is such that any d+ 1 sets have a common intersection, then all sets do. In 1957, Hadwiger
and Debrunner [22] considered a generalization of this setting. Let F be a family of sets in
Rd and let p ≥ q ≥ d+ 1 be integers. We say that F has the (p, q)-property if |F| ≥ p and
for every choice of p sets in F there exist q among them which have a common intersection.
We further say that a set of points S stabs F if every set in F contains at least one point
from S. Then the following holds.

I Theorem 1. [Hadwiger and Debrunner [22]] Let d ≥ 1 be an integer. Let p and q be
integers such that p ≥ q ≥ d + 1 and (d − 1)p < d(q − 1), and let F be a finite family of
convex sets in Rd. Suppose that F has the (p, q)-property. Then there exist p− q + 1 points
in Rd stabbing F .

Note that the bound on the number of points needed is tight. That is, for every
p ≥ q ≥ d + 1 there exist families of convex sets with the (p, q)-property where at least
p− q + 1 points are needed to stab the whole family. This is easily seen by considering any
family of p−q+1 disjoint convex sets where one of them is taken with multiplicity q. It is also
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known that whenever q ≤ d, there exist families of convex sets with the (p, q)-property where
arbitrary large number of points are needed. This can be seen by taking n hyperplanes in
general position in Rd (meaning that no two hyperplanes are parallel and no d+1 hyperplanes
intersect at the same point). Then any d hyperplanes intersect at some point (in other words,
they have the (d, d)-property) and any single point stabs at most d hyperplanes. Thus, at
least bn/dc points are necessary to stab all hyperplanes.

Many related results have since been established. Among the most famous is one from
Alon and Kleitman [5] who in 1992 proved that for any p ≥ q ≥ d+ 1, there exists a finite
upper bound on the maximum number of points needed to stab a family of convex sets
with the (p, q)-property. However, all the known upper bounds are probably far from being
tight in the general case. As an example, for (p, q, d) = (4, 3, 2), their proof yields an upper
bound of 4032 (while the best known lower bound is 3). Since then, this number has been
proven to lie between 3 and 13 (inclusive) [29]. A further improvement to the upper bound
from 13 to 9 by McGinnis has recently appeared as a preprint [33]. Still, the only values
of p ≥ q ≥ d+ 1 for which exact values are known are those corresponding to Theorem 1.
There is a lot of work in this more general setting, both improving the bounds (e.g. [28]) as
well as adapting to generalizations of convex sets (e.g. [27, 36]), and it is an interesting open
problem to study algorithmic questions connected to these results.

Special cases where some further restrictions are imposed on the considered sets have
also led to interesting results. One much studied example is obtained by considering only
axis-aligned boxes in Rd. In this case, we can already start by strengthening the result given
by Helly’s theorem, as for a family of axis-aligned boxes in Rd, if all pairs intersect then
the whole family intersect. As is expected, this additional structure leads to stronger (p, q)
results. One early result by Hadwiger and Debrunner [23] is the following (notice the weaker
conditions on p and q and the independence on d).

I Theorem 2 ([23]). Let d ≥ 1 be an integer. Let p and q be integers such that 2q − 2 ≥
p ≥ q ≥ 2 and let F be a finite family of axis-aligned boxes in Rd. Suppose that F has the
(p, q)-property. Then there exist p− q + 1 points in Rd stabbing F .

Another example is when all sets are translations either with or without scaling of some
convex set K. Here, strong results exist only for some very simple cases such as K being
a d-dimensional cube or ball. For example the maximum number of points needed to stab
families of discs in the plane with the (p, 2)-property lies between 4p− 4 and 7p− 10 inclusive
[41]. These bounds are tight for p = 2, that is, in the case of pairwise intersecting discs
(which was previously shown by Stachó [38] and Danzer [15]).

From an algorithmic point of view, little work seems to have been done towards computing
these stabbing points. One instance which has recently received some attention is the
aforementioned case of pairwise intersecting discs in the plane. Har-Peled et al. [24] showed
how such a family can be stabbed with 5 points in linear time (which is one more point than
the theoretical optimum). Shortly after another paper, yet to be formally published, claimed
to find a linear time algorithm for stabbing such a family with only 4 points [10]. However,
the computation of small stabbing sets for families of general convex polyhedra with the
(p, q)-property seems to not have been studied and will constitute one part of this paper, in
the setting of Theorem 1.

For a great overview of the studied questions and known results around (p, q) problems,
we refer the interested reader to the 2003 survey by Eckhoff [18].

Before continuing, we would also like to mention that Helly’s theorem has been generalized
to many other settings, as this will come into play in the second part of this paper. In
general, we say that a set system has Helly number h if the following holds: if any h sets in



J. Dallant and P. Schnider 5:3

the set system have a common intersection, then the whole set system does. Helly numbers
have been shown to exist for many set systems, such as convex sets in Rd × Zk [6, 26] or
abstract convex geometries (see the book by Edelman and Jamison [19] or Chapter III in the
book by Korte et al. [30]), which include subtrees of trees and ideals of posets. In many of
these cases, the proofs can be adapted to show a constant stabbing number analogous to the
result by Alon and Kleitman. In this work, we will show that under some weak conditions,
the existence of a Helly number implies a tight Hadwiger-Debrunner type result.

Our contributions

In Section 2, we give an algorithm for computing p− q + 1 stabbing points for families of
convex polytopes in Rd which obey the conditions of the Hadwiger-Debrunner (p, q)-Theorem.
This algorithm runs in time O((p − q + 1)nd + npd). We then show in Section 3, how to
substantially improve the (expected) runtimes in dimensions 2 and 3.

In Section 4 we explore two other settings for convex sets related to the (p, q)-Theorem
where our algorithms also apply. The first generalizes a formulation (due to Breen [9]) of
Helly’s theorem in terms of holes in the unions of certain sets. The second is a quantitative
variant of the (p, q)-Theorem due to Montejano and Soberón [35].

In Sections 5 and 6 we explore the same themes in settings which abstract and generalize
those of convex sets in Euclidean space. We derive (p, q)-theorems in these setting as well as
algorithmic results in these settings. We then give concrete examples in Section 7. Some of
the results obtained in these last 3 section are folklore.

2 Stabbing convex polytopes in any fixed dimension

2.1 A proof of the Hadwiger-Debrunner theorem
We will first consider a proof of Theorem 1 which will naturally lead to an algorithm for
finding stabbing points. In a book by Matoušek [32], the proof of this theorem is left as an
exercise, yet the hint suggests that the intended solution is close to the proof below. The
main differences with other proofs for this theorem are that it is more constructive and does
not make use of a separating hyperplane, which will make it easier to adapt to other settings
later on.

We will make use of a lemma which can also be found in the same book. We include the
proof as we will later use the same ideas to prove a similar lemma. For a non-empty compact
set S, let lexmin(S) denote its lexicographical minimum point. Then we have the following.

I Lemma 3 ([32, Lemma 8.1.2]). Let F be a family of at least d+ 1 compact convex sets in
Rd, such that I :=

⋂
F is non-empty. Let x := lexmin(I). Then, there exist a subfamily

H ⊂ F of size d such that x = lexmin(
⋂
H).

Proof. Let F , I and x be as specified in the statement. Let Sx denote the set of all points
lexicographically smaller than x. This set is convex and is disjoint from I. By Helly’s
theorem, there exists a subfamily of d + 1 members of F ∪ {Sx} with an empty common
intersection. These members have to include Sx, as all members of F have a non-empty
common intersection. Let H ⊂ F be the family consisting of the remaining d sets and let xH
be the lexicographical minimum point of I ′ :=

⋂
H (which is compact and non-empty). xH

can not be lexicographically larger than x because H ⊂ F and it can not be lexicographically
smaller than x because I ′ ∩ Sx = ∅. Thus, xH = x. J

Recall the theorem we wish to prove:

CGT
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I Theorem 1. [Hadwiger and Debrunner [22]] Let d ≥ 1 be an integer. Let p and q be
integers such that p ≥ q ≥ d + 1 and (d − 1)p < d(q − 1), and let F be a finite family of
convex sets in Rd. Suppose that F has the (p, q)-property. Then there exist p− q + 1 points
in Rd stabbing F .

Proof. We will prove the theorem for families of compact convex sets, as we will only deal
with such families later. One can however reduce the original theorem to this one (see
Appendix A), so this is done without loss of generality.

Call a pair of integers (p, q) admissible if p ≥ q ≥ d + 1 and (d − 1)p < d(q − 1). Let
(p, q) be an admissible pair, and let F be a family of compact convex sets of Rd with the
(p, q)-property.

We reason by induction on p, the base case being p = q = d+ 1 which is Helly’s theorem.
If p = q > d+ 1, then F also has the (d+ 1, d+ 1) property (as having the (p, q)-property

implies having the (p− 1, q − 1)-property) and the result again follows from Helly’s theorem.
So suppose that p > q and that the result is true for any admissible pair (p′, q′) with

p′ < p.
If (d− 1)p = d(q − 1)− k − 1 for k ≥ 1, then notice that (p− k, q − k) is an admissible

pair, as in that case (d− 1)(p− k) = d(q − k − 1)− 1 which together with p > q also implies
that q − k ≥ d+ 1. Thus the result follows from the induction hypothesis.

It now remains to consider the case where p > q and (d− 1)p = d(q − 1)− 1.
To do so, let us construct a point x∗(F) as follows:
For every non-empty subfamily S ⊂ F of d convex sets with non-empty intersection, let
xS be the lexicographical minimum of IS =

⋂
S.

Let x∗(F) be the lexicographical maximum point among all such xS ’s.

Let G be one of the families defining x∗(F), that is, G ⊂ F is a subfamily of d sets which
have x∗(F) as the lexicographical minimum of their intersection.

To establish the theorem, it is enough to show that by choosing x∗(F) as one of our
stabbing points, we can stab all the remaining sets (i.e. those which do not contain x∗(F))
with p− q points. Let R = {C ∈ F | x∗(F) 6∈ C} be the set of remaining sets.

Let us argue that for any S ∈ R, S ∩ (
⋂
G) is empty. To do so, suppose it was not,

and let y be the lexicographical minimum of that intersection. By Lemma 3, y is the
lexicographical minimum of the intersection of d sets in F . Moreover, by definition of R and
G, y is lexicographically larger than x∗(F). This contradicts the definition of x∗(F). Thus,
S ∩ (

⋂
G) is empty.

Two cases arise:
1. (|R| ≥ p − d) We show that R has the (p − d, q − d + 1)-property. Indeed, choose

any p − d members from R together with the d members from G. We know from the
(p, q)-property of F that there exists a subfamily E ⊂ R∪G of size q whose members have
a non-empty common intersection. E cannot contain all elements of G, as q > d = |G|
and the intersection of all members of G together with any member of R is empty. Thus,
E contains at least q− d+ 1 members of R. This shows that R has the (p− d, q− d+ 1)-
property. Notice that with the assumptions p > q and (d− 1)p = d(q − 1)− 1 which we
are working under, (p− d, q − d+ 1) is admissible. Thus, by the induction hypothesis, R
can be stabbed with p− d− (q − d+ 1) + 1 = p− q points.

2. (|R| < p − d) In this case, choose R as a whole together with G and p − d − |R|
other members of F . By the same reasoning as in case 1., there exists a subset of
q− (d− 1 + p− d− |R|) = |R|+ 1 + q− p members of R which intersect and can thus be
stabbed by a single point. The remaining |R| − (|R|+ 1 + q − p) = p − q − 1 sets can
trivially be stabbed by p− q − 1 points.
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Thus, R can be stabbed by p− q points, which implies that F can be stabbed by p− q+ 1
points and by induction, concludes the proof. J

2.2 A first algorithm
This proof naturally leads to an algorithm. Let d > 0 be some fixed dimension and let F
be a family of compact convex polytopes with (p, q)-property, described as intersections
of a total of n halfspaces in general position. For simplicity we assume that the common
intersection of any d of these polytopes is either empty or contains a unique point with
minimum x-coordinate (which is then also the lexicographically minimum point in the
intersection).

The algorithm works as follows:

1. Reduce p and q (as done in the proof of Theorem 1) to reach the case where p = q = d+ 1
or the case where p > q and (d− 1)p = d(q − 1)− 1.

2. Construct a point x∗(F) defined as in the proof. We choose it as one of our stabbing
points. Now, remove from F all the sets that are stabbed by this point. If there are any
remaining sets then either |F| ≥ p − d and F satisfies the (p − d, q − d + 1)-property,
where (p− d, q − d+ 1) is admissible, or F consists of p− q + k sets, k < q − d, where
some k + 1 of them have a common intersection.

3. In the first case, we can continue inductively.
4. In the second case we can trivially stab the remaining sets using p− q points.

The correctness of the algorithm follows immediately from the proof of Theorem 1.
The only detail that needs some additional scrutiny is the correctness for the base case
p = q = d+ 1. Notice that in this case all sets have a common intersection and Lemma 3
ensures that x∗(F) stabs the whole family F .

Regarding the runtime of Step 2, the most natural way to compute x∗(F) gives the
following.

I Lemma 4. We can compute x∗(F) in O(n|F|d−1) time.

Proof. For every polytope P ∈ F , we let n(P ) denote the total number of halfspaces
describing P . For every subfamily G of F , we let n(G) :=

∑
P∈G n(P ).

We can compute x∗(F) by testing for intersection in every subfamily G of F of size d
and computing the point with minimum x-coordinate of that intersection if it is non-empty.
We then take the lexicographically maximum point among all those computed.

If we consider some fixed subfamily G, this computation can be done in O(n(G)) time
using linear programming in constant dimension. Thus, the computation for that subfamily
will cost at most c · n(G) for some constant c which does not depend on G. Charge this cost
to the polytopes P ∈ G by attributing a cost of c · n(P ) to a polytope P .

Now, consider the cost charged to some fixed polytope P for the whole computation.
As P appears in no more than |F|d−1 subfamilies of size d, its total cost charge is upper
bounded by c · n(P ) · |F|d−2. Summing across all polytopes P ∈ F , we get a total cost of
O(n · |F|d−1)). J

This quantity needs to be computed at most p− q+ 1 times with the family F decreasing
in size each time.

For Step 4, we have the following.

I Lemma 5. For any k > 0, we can find a point stabbing k polytopes of F in O(n|F|d) time,
if such a point exists.

CGT
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Proof. If k ≤ d, then we can test every subfamily of size k + 1 for common intersection and
compute a point in the intersection for a total cost of O(n|F|k) ≤ O(n|F|d).

If k > h − 1, then we know from Lemma 3 that the lexicographical minimum of the
intersection of k convex polytopes is also the the lexicographical minimum of the intersection
of some d polytopes in F (which in our case is also the point with minimum x-coordinate in
the intersection). Thus, one can find a point stabbing at least k sets by computing the point
with minimum x-coordinate for each subfamily of size d (in O(n|F|d) time) and counting
the number of sets intersected for each of the O(|F|d) computed points (in O(n|F|d) time as
well). J

Because we know that when reaching Step 4 we have |F| < p, it follows that Step 4 can
be done in O(npd) time.

Thus, we get a total runtime of

O((p− q + 1)nd + npd).

If p (and thus q) is small compared to n, the bottleneck in the computation time is the
first term, which scales as O(nd) with respect to n. The natural question that now comes
to mind is: can we do better than O(nd)? We will see in the following section that we can
indeed do better at least in dimensions 2 and 3, although at the cost of considering expected
rather than worst-case runtime.

I Remark 6. If we further restrict the problem to only consider convex polytopes described
by at most a constant number of halfspaces each, then the second term in the runtime
becomes O(pd+1). In the plane, this term can further be improved from O(p3) to O(p2 log p)
by adapting the Bentley-Ottmann sweep line algorithm [8] (see Appendix B for more details).
On the other hand, one can easily reduce the problem of finding a point stabbing at least
three lines among p lines to the problem of Step 4 in the above algorithm (for k > 1) in
linear time if we allow for infinitesimally thin polygons. This problem is 3-SUM hard (see the
seminal paper by Gejentaan and Overmars [21], where the concept of 3-SUM hardness was
first introduced). There is a strong belief that such problems can not be solved in O(p2−ε)
time, which means that Step 4 can probably not be solved in O(p2−ε) time either, even for
constant-size polygons.

3 Faster algorithms for 2D and 3D polytopes

In what follows we deal with the cases d = 2 and d = 3. Note that for d ≤ 3 we can get
the vertex representation of our polytopes as well as the faces of all dimensions from the
halfspace representation in O(n logn) time by computing the convex hulls of the dual point
sets. Thus we will assume that we have access to the vertices and edges and faces of our
polygons and polyhedra as the O(n logn) overhead will be dominated by the rest of our
algorithms.

3.1 The planar case
In this whole section, the family F consists of compact convex polygons with a total of n
(distinct) vertices in the plane and has the (p, q)-property, for some admissible pair (p, q).
For the sake of simplicity, we will assume that the lines defining the polygon edges are in
general position, non-vertical and that all points defined as the lexicographical minimum in
the intersection of a pair of sets have different x-coordinates. Under these assumptions the
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lexicographical minimum in a polygon (or intersection of polygons) is simply the leftmost
point.

We break down the computation of x∗(F) into two parts. Consider two intersecting
polygons P1 and P2. The point x which is the leftmost of P1 ∩P2 can be of one of two types.
Either (case 1) x is the leftmost point of P1 (resp. P2) and is contained in the interior of P2
(resp. P1) or (case 2) x is the proper intersection of an upper-hull edge eU of P1 (resp. P2)
and a lower-hull edge eL of P2 (resp. P1) with the following property: the outward facing
normal vectors of eU and eL form a (counter-clockwise orientated) angle of less than 180
degrees. Reciprocally, an upper-hull and a lower-hull edge which intersect with this property
define the leftmost point of an intersection of two polygons.

We define x∗1(F) to be the rightmost point among all pairs of intersecting polygons
in F corresponding to the first case (or x∗1(F) = (−∞,∞) if there is no such pair), and
similarly for x∗2(F) and the second case. It is clear that x∗(F) is the rightmost point of
{x∗1(F), x∗2(F)}.

We will use the following result, which can be obtained by an adaptation of a proof by
Matoušek [31] with the halfspace partition tree construction from Chan [12] (see Appendix C).

I Theorem 7. Let S be a set of n objects, k a constant, and φ1, φ2, . . . , φk mappings from
S to Rd. Let φS be the function which maps k-tuples of halfspaces H1, H2, . . . ,Hk of Rd to
the set

φS(H1, H2, . . . ,Hk) := {s ∈ S | φ1(s) ∈ H1, φ2(s) ∈ H2 . . . , φk(s) ∈ Hk}.

Suppose we have computed the point sets φ1(S), . . . , φk(S) and let n ≤ m ≤ n/ logω(1) n. Then
we can preprocess the point sets in O(n logk n+m) time such that |φS(H1, H2, . . . ,Hk)| can
be computed in O((n/m1/d)(logn)2(k+(k−d−1)/d)(log logn)1/d) expected time for any k-tuple
of halfspaces.

Note that we have made no big effort in minimizing the polylog factor in the query
runtime. It is thus conceivable that a more careful use of the tools in Matoušek’s and Chan’s
papers could make this factor smaller.

We can use this result to prove the following.

I Lemma 8. We can compute x∗1(F) in O(n4/3 log4 n(log logn)1/3) expected time.

Proof. To compute x∗1(F), we can test for each polygon if its leftmost point is contained
in the interior of another, and keep the rightmost point among those which are. We
triangulate all polygons, so that this reduces to testing, for each of the O(n) leftmost
points, if it is in the interior of one of the O(n) triangles. In the dual plane, this can
be expressed as the composition of three half-plane range queries. Using Theorem 7 with
d = 2, k = 3, and m = n4/3 log4 n(log logn)1/3, we can thus preprocess the O(n) triangles in
O(m) time such that counting how many triangles contain a particular point can be done in
O(n1/3 log4 n(log logn)1/3) expected time. By querying all points we get the result. J

It remains to see how to compute x∗2(F) in subquadratic time. For this we use a simple
but remarkably powerful technique discovered by Chan [11], which reduces many optimization
problems to the corresponding decision problem, with no blow-up in expected runtime.

I Lemma 9. Let α < 1 and r be fixed constants. Let f : P → Q be a function that maps
inputs to values in a totally ordered set (where elements can be compared in constant time)
with the following properties.

CGT
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1. For any input P ∈ P of constant size, f(P ) can be computed in constant time.
2. For any input P ∈ P of size n, we can construct inputs P1, . . . , Pr ∈ P each of size at

most dαne in time T (n), such that f(P ) = max{f(P1), . . . , f(Pr)}.
3. For any input P ∈ P of size n and any t ∈ Q, we can decide f(P ) ≤ t in time T (n).
Then for any input P ∈ P, we can compute f(P ) in O(T (n)) expected time, assuming that
T (n)/nε is monotone increasing for some constant ε > 0.

We can apply this technique to the computation of x∗2. Here, each P ∈ P is a set of edges
which are oriented depending on which side the polygon it bounds lies on, Q is the plane
with lexicographical order, and f(P ) is x∗2 (we abuse notation slightly by using x∗2 both for
sets of oriented edges and sets of polygons). We make the following observations.

For any constant-size set E of oriented edges, x∗2(E) can be computed in constant time.
This verifies Property 1.
For any family E of n oriented edges, we can partition it into 3 disjoint subfamilies
S1, S2, S3 of size between bn/3c and dn/3e each. Then, let E1 := S2 ∪ S3, E2 := S1 ∪ S3
and E3 := S1 ∪ S2. Every set Ei is of size |Ei| ≤ d2n/3e. Thus, x∗2(E) is the rightmost
point among {x∗2(E1), x∗2(E2), x∗2(E3)}. These families can be constructed in O(n) time.
This verifies Property 2, assuming T (n) ≥ Ω(n) (which it will be).

Thus, in order to apply Chan’s framework, it remains to decide x∗2(E) ≤lex t quickly.

I Lemma 10. For any point t in the plane and a set of n oriented edges E, we can decide
x∗2(E) ≤lex t in O(n4/3 log8 n(log logn)1/3) expected time.

Proof. We can rephrase x∗2(E) ≤lex t as deciding whether there exist two oriented edges in
E which intersect at an appropriate angle to the right of the vertical line ` passing through t.
Thus we start by discarding all the (parts of) segments in E which lie to the left of `. We
then want to preprocess the O(n) segments corresponding to upper-hull edges (i.e. those
with an outward facing normal pointing up) such that for any lower-hull edge eL we can
detect if there is an upper-hull edge which intersects it at an appropriate angle quickly.

Map each upper-hull edge eU to its endpoints a(eU ), b(eU ) and to the point p∗(eU ) dual
to the line supporting it. Now for a lower-hull edge eL, let R(eL) denote the region of the
plane corresponding to all points whose dual lines intersect eL at an appropriate angle. This
region is a convex polygon with at most 4 edges. Thus it can be partitioned into two triangles
R1(eL) and R2(eL). Call ` the line supporting eL. Now, all upper-hull edges eU intersecting
eL at an appropriate angle fall into exactly one of the following categories:

a(eU ) lies to the left of `, b(eU ) lies to the right of ` and p∗(eU ) ∈ R1(eL),
a(eU ) lies to the left of `, b(eU ) lies to the right of ` and p∗(eU ) ∈ R2(eL),
a(eU ) lies to the right of `, b(eU ) lies to the left of ` and p∗(eU ) ∈ R1(eL),
or a(eU ) lies to the right of `, b(eU ) lies to the left of ` and p∗(eU ) ∈ R2(eL).

The number of upper-hull edges corresponding to each category can be counted by a
range query which is the composition of 5 half-plane queries on the 3 liftings defined above.

We can again use Theorem 7 as we did for x∗1, this time with k = 5, to query all lower-hull
edges in O(n4/3 log8 n(log logn)1/3) expected total time. J

We can thus use Lemma 9 to compute x∗2(F) in the same asymptotic expected time. Note
that Hopcroft’s problem reduces to computing x∗2(E) for a general set of oriented edges E ,
and thus this runtime is likely close to optimal (see Erickson’s paper [20] for a lower bound
in a somewhat general model of computation).

Putting everything together we get the following.
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I Theorem 11. Let (p, q) be an admissible pair for d = 2 and let F be a family of compact
convex polygons in the plane with a total of n vertices and the (p, q)-property. Then we can
compute a set of at most p− q+ 1 points stabbing F in O((p− q+ 1)n4/3 log8 n(log logn)1/3 +
np2) expected time.

3.2 Constant-size polygons
If we restrict all polygons to have at most a constant number of vertices, then a simpler
proof using a Theorem by Agarwal et al. [1, Theorem 2.7] yields a slightly faster algorithm.
Indeed, this theorem states the following.

I Theorem 12 ([1, Theorem 2.7]). Let F be a family of compact convex polygons in the
plane with a total of n vertices. Then, we can count the number of pairs of polygons in F
which intersect in O(n4/3 log2+ε n) time, for any constant ε > 0.

Using this, it is easy to prove the following.

I Theorem 13. Given a vertical line ` and a family F of compact convex polygons in
the plane with a total of n vertices, we can decide whether x∗(F) lies to the right of ` in
O(n4/3 log2+ε n) time, for any constant ε > 0.

Proof. We start by cutting all polygons along the vertical line ` and discarding the parts
lying on the left of ` in linear time.

The point x∗(F) lies to the right of ` if and only if there are two polygons which have
a non-empty intersection but do not intersect on `. This can be decided by counting the
number of pairwise intersecting polygons in O(n4/3 log2+ε n) time, counting the number of
pairwise intersecting polygons on ` (this can be done in O(n log(n)) time, or one can use the
same algorithm again), and then comparing these numbers. They differ if and only if some
pair of polygons intersect exclusively to the right of `.

This whole procedure leads to an algorithm with a O(n4/3 log2+ε n) runtime. J

Together with the modification mentioned in Remark 6 and a straightforward application
of Lemma 9, this yields the following.

I Theorem 14. Let (p, q) be an admissible pair for d = 2 and let F be a family n of
compact convex polygons in the plane with at most a constant number of vertices each and
the (p, q)-property. Then we can compute a set of at most p − q + 1 points stabbing F in
O((p− q + 1)n4/3 log2+ε n+ p2 log p) expected time, for any constant ε > 0.

I Remark 15. At first glance it might seem like the constant-size assumption plays no essential
role here for the n4/3 log2+ε n term in the runtime, and that nothing stops us from using
the same approach in the general case. The trouble in the general case however comes in
enforcing point 3 in Lemma 9. When the polygons are not restricted in size, it might be
impossible to create subproblems of appropriate sizes. This is not a problem in our proof as
we are working with sets of oriented edges instead of sets of polygons.

We finish this part by proving a lower bound on a restricted case of the problem solved
in Theorem 13 (thus, a lower bound on the general case also).

I Theorem 16. Given a vertical line ` and a family F of n closed triangles in the plane
which all intersect `, detecting whether two triangles intersect exclusively to the right of `
requires Ω(n logn) time for the worst case in the algebraic decision tree model.

CGT
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`
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3

Figure 1 Right Intersection instance corresponding to the Element Uniqueness instance [1, 0, 0]

Proof. We prove the claim by a reduction from the Element Uniqueness Problem, which
is known to have Θ(n logn) time complexity in this model [7]. The Element Uniqueness
Problem is the following: given an array of n integers, test if they are all distinct.

Let a be an array of length n representing an instance of the Element Distinctness
Problem. Construct an instance of our problem in O(n) time in the following way.

Let ` be the y-axis.
For every k ∈ {0, . . . , n − 1}, create a triangle with vertex coordinates (0, n · a[k] + k),
(1, 2 · a[k]) and (1, 2 · a[k] + 1).

All triangles trivially intersect the vertical line ` as they have a vertex lying on the y-axis.
Let k, k′ ∈ {0, . . . , n− 1}, such that k 6= k′.
Suppose that a[k] = a[k′]. Because the corresponding triangles share two vertices with

each other they have a non-empty intersection. Moreover, this intersection lies entirely to
the right of the y-axis, as the respective leftmost vertices of the triangles lie on this line and
are distinct.

Now suppose that a[k] < a[k′]. Then it is easy to see that both triangles lie strictly on a
different side of the line passing through the points with coordinates (0, a[k] + n+ 1/2) and
(1, 2 · a[k] + 3/2), and are thus disjoint.

Thus, one gets a positive response to the Element Distinctness instance if and only if one
gets a positive response to this constructed instance. Coupled with the O(n) runtime of the
reduction, this concludes the proof. J

The relevance of the requirement that all polygons intersect ` is that in the case of
polygons with at most a constant number of vertices and having the (p, q) property, we can
reduce the problem in Theorem 13 to this case in O(np) time.

3.3 The 3D case
Here we deal with the analogous case for the 3D polyhedra. In this case the Helly number
becomes 4, and x∗(F) is defined in terms of triplets of convex polyhedra with non-empty
common intersection.

I Theorem 17. Let (p, q) be an admissible pair for d = 3 and let F be a family of compact
convex polyhedra in R3 with a total of n vertices and the (p, q)-property. We can compute a
set of at most p− q + 1 points stabbing F in O((p− q + 1)n5/2 log10 n(log logn)1/6 + np3)
expected time.
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Proof. First, we compute the family F2 of all polyhedra obtained as pairwise intersections
of polyhedra in F . This can be done in O(n2) time using a linear-time algorithm to compute
each intersection (for example the one by Chan [13]). Assuming the planes defining the
polyhedra are in general position and none of the edges lie in a plane parallel to the yz-plane,
the leftmost point in the intersection of three polyhedra in F is either
1. the leftmost point of a polyhedron in F2 contained in the interior of a polyhedron of F ,
2. the leftmost point of a polyhedron in F contained in the interior of a polyhedron of F2,
3. the intersection of an edge of a polyhedron in F2 and the interior of a facet of a polyhedron

in F (note that not all such intersections define the leftmost point of the intersection of
three polyhedra in F).

The rightmost point corresponding to the first two cases can be found in expected time
O(n9/4 logO(1) n) by triangulating all polyhedra and then using the same methods as for the
2D case. We now focus on the third case. In what follows, we only deal with triangular
facets, as the general case reduces to this one by triangulating all facets in O(n2) total time.
We will preprocess the triangles and then query each edge to count the number of triangles
which intersect it and define the leftmost point of a three-wise intersection of polyhedra.
Testing if a segment intersects a triangle in R3 can be done by comparing the signs of three
polynomial functions of degree three on the coordinates of the points [37]. If e = (p, q) is the
segment we are testing against a triangular facet f , these polynomials take the form of the
following determinant, where (a, b) is one of the three edges of f :

D(e, f) =

∣∣∣∣∣∣∣∣
px py pz 1
qx qy qz 1
ax ay az 1
bx by bz 1

∣∣∣∣∣∣∣∣ .
It can be checked that testing D(e, f) ≥ 0 can be expressed as testing if P (f) ∈ H(e), where
P (f) is a point in R5 depending only on f and H(e) is a halfspace of R5 depending only on e.
The most convenient way is perhaps to use the algorithm described in a survey by Agarwal
and Erickson [2, Section 5.2] (which is a very slight variant of an algorithm by Agarwal and
Matoušek [3]), which computes a linearization of smallest dimension and simply involves
computing the rank of a matrix whose coefficients depend on those of the polynomial to
linearize.

Agarwal et al. [1] further show that when given an edge e of a polyhedron and a facet f
of another polyhedron such that e and f intersect, testing if e ∩ f is the leftmost point of
the intersection of the corresponding polyhedra can be expressed as testing if the outward
normal vector of f lies in the intersection of three halfspaces (depending on e and the faces
which support it).

Using again Theorem 7, this time in dimension d = 5 and with k = 6, we can preprocess
the O(n2) facets of F2 in O(n5/2 log10 n(log logn)1/6) time such that we can query any
oriented edge in O(n3/2 log10 n(log logn)1/6) expected time. By querying all O(n) edges in
F we can decide if a leftmost point in the intersection of three polyhedra in F corresponding
to the third case exists in O(n5/2 log10 n(log logn)1/6) total expected time. By applying
Lemma 9 as we did in the planar case, we thus get the result. J

4 Other conditions

In this part we return to families of convex sets in the plane and investigate further conditions
that are sufficient for the family to be stabbed by a fixed number of points. In the whole
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part, we will consider the planar case, but we expect that with some more care the results
can be extended to higher dimensions.

The main reason why we consider the planar case is the following: all proofs below use
the algorithm given above, all we do is showing that the algorithm is also correct under
some assumptions other than the (p, q)-condition. In particular, we immediately get efficient
algorithms for the below results.

4.1 Holes
The first condition we investigate considers holes in the union of sets. Let F be a finite
family of convex sets in the plane and let A ⊂ R2 be the union of the sets in F . A hole is a
bounded connected component of R2 \A.

There is an equivalent formulation of Helly’s theorem due to Breen, which in the plane
can be stated as follows: Let F be a finite family of pairwise intersecting convex sets in the
plane with the property that the union of any three of them has no hole, then F can be
stabbed by a single point [9, 34]. We prove the following generalization of this result.

I Theorem 18. Let F be a finite family of pairwise intersecting convex sets in the plane with
the property that the union of any k + 3 of them has at most k holes, then F can be stabbed
by k + 1 points. Further, the k + 1 stabbing points can be chosen to lie on a single line.

Proof. Let x∗(F) be as above, that is, the lexicographical maximum among any lexicograph-
ical minimums in the intersection of two sets in F , and let F1 and F2 be the sets in F that
define x∗(F). Consider the vertical line v through x∗(F) and let F ′1 and F ′2 be the parts of
F1 and F2, respectively, that lie to the left of v. Let now ` be a line through x∗(F) which
separates F ′1 and F ′2. Such a line exists as otherwise x∗(F) would not be the lexicographical
minimums in the intersection of F ′1 and F ′2. Further note that any set in F that is not stabbed
by x∗(F) must intersect ` to the left of x∗(F): there cannot be intersections exclusively
to the right of x∗(F) by its definition, and as any set intersects F1 and F2, it follows from
convexity that it must also intersect `.

Let now R be the family of remaining sets, that is, the sets not stabbed by x∗(F). We
claim that among any k + 1 of them, some two intersect along `. Indeed, if there were k + 1
sets whose intersections with ` are pairwise disjoint, the union of these sets with F1 and F2
would have k + 1 holes, which is excluded by the assumptions of the theorem. We can thus
apply the Hadwiger-Debrunner (p, q)-theorem on ` to stab R with k points, so in total we
have stabbed F with k + 1 collinear points. J

Note that opposed to the proof of the Hadwiger-Debrunner (p, q)-theorem, we only
compute x∗(F) once. After this, we only need the 1D-variant, where stabbing points of n
intervals can easily be computed in time O(n logn). We thus get the following.

I Proposition 19. Let F be a family of compact convex polygons in the plane with a total of
n vertices and with the property that the union of any k+ 3 of them has at most k holes. We
can compute a set of at most k + 1 collinear points stabbing F in O(n4/3 log8 n(log logn)1/3)
expected time.

4.2 Number of intersections
Another result to which our algorithm can be applied is the following, due to Montejano and
Soberón.
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I Theorem 20 (Montejano and Soberón [35]). Let p, q, r, d be integers with p > q > d and
r >

(
p
q

)
−
(
p+1−d
q+1−d

)
. Let F be a family of convex sets in Rd with the property that for any p

of them at least r of their q-tuples intersect. Then F can be stabbed by p− q + 1 points.

In the plane, their proof is analogous to our proof of Theorem 18, that is, after removing
all sets already stabbed by x∗(F), the assumptions on the set can be used to show that the
intersections of the remaining sets with the dividing line ` satisfy the (p− 2, q − 1)-property.
In particular, the same algorithm to compute the stabbing points is correct, and we get the
following.

I Proposition 21. Let p, q, r be integers with p > q > 2 and r >
(
p
q

)
−
(
p−1
q−1
)
. Let F be a

family of compact convex polygons in the plane with a total of n vertices and with the property
that for any p of them at least r of their q-tuples intersect. We can compute a set of at most
p− q + 1 collinear points stabbing F in O(n4/3 log8 n(log logn)1/3) expected time.

5 A more general approach

We have seen in the last chapter an approach that uses Helly’s theorem to prove the Hadwiger-
Debrunner theorem. A natural path forward is to try adapting the method to other contexts
where Helly-type theorems exist and prove corresponding (p, q) versions. By taking a close
look at our proof for the Hadwiger-Debrunner (p, q)-theorem, we can observe that it relies
almost exclusively on Lemma 3. This is strongly related with the notion of d-collapsibility,
which is a property of the nerve of set-systems introduced by Wegner [40]. Lemma 3 is easily
seen to imply that finite families of convex sets in Rd have d-collapsible nerves (this was
already shown in a somewhat similar manner in Wegner’s original paper) and it is a folklore
result that this is a sufficient condition to prove Hadwiger and Debrunner’s (p, q)-Theorem.
Here we define Ordered-d-collapsible systems as set systems with a property analogous to
Lemma 3 and give a proof of the folklore result that this implies such a (p, q)-Theorem. This
proof has algorithmic consequences, some of which are given in the following section.

I Definition 22 (Ordered-d-collapsible system).
Let B be a set, D be a family of subsets of B, d ≥ 1 be an integer and � be a total order on B.
We say that the tuple (B,D, d,�) is an Ordered-d-collapsible system if the following is true.

Let F ⊂ D be a family of n > d sets in D such that I :=
⋂
F is non-empty. Let x be the

�-min of I (i.e. the smallest element of I with respect to the order �, which we suppose
exists). Then, there exists a subfamily G ⊂ F of size d such that x is the �-min of G.

The elements of B are called S-compact sets

As was stated earlier, this structure is enough to carry out a similar proof as the one
we saw for the Hadwiger-Debrunner theorem. Call a pair (p, q) of integers d-admissible if
p ≥ q ≥ h and (d− 1)p < d(q − 1). Then we have the following.

I Theorem 23. Let S = (B,D, d,�) be an Ordered-d-collapsible system. Let (p, q) be a
d-admissible pair of integers. Let F be a finite family of non-empty sets of D. Suppose that
F has the (p, q)-property. Then there exist p− q + 1 elements of B stabbing F .

Proof. Let S = (B,D, d,�) be an Ordered-d-collapsible system.
Let (p, q) be a d-admissible pair, and let F be a family of sets of D with the (p, q)-property.
We will reason by induction on p, the base case being p = q = h which is true by the

Helly property of the system. If p = q > h, then F also has the (h, h) property (as having
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the (p, q)-property implies having the (p− 1, q − 1)-property) and the results again follows
from the Helly property of the system.

So suppose that p > q and that the result is true for any d-admissible pair (p′, q′) with
p′ < p.

If (h − 2)p = (h − 1)(q − 1) − k − 1 for k ≥ 1, then notice that (p − k, q − k) is an
h-admissible pair, as in that case (h− 2)(p− k) = (h− 1)(q− k− 1)− 1 which together with
p > q also implies that q − k ≥ h. Thus the result follows from the induction hypothesis.

It now remains to consider the case where p > q and (h− 2)p = (h− 1)(q − 1)− 1.
To do so, let us construct an element b∗(F) as follows:
For every non-empty subfamily S ⊂ F of h− 1 sets with non-empty common intersection,
let bS be the �-min of IS =

⋂
C∈S C, which exists by definition of an Ordered-d-collapsible

system.
Let b∗(F) be the �-max element among all such bS ’s.

Let G be one of the families defining b∗(F), that is, G ⊂ F ′ is a subfamily of h− 1 sets
which have b∗(F) as the �-min of their intersection.

To establish the theorem, it is enough to show that by choosing b∗(F) as one of our
stabbing elements, we can stab all the remaining sets (i.e. those which do not contain b∗(F))
with p− q elements. Let R = {S ∈ F | b∗(F) 6∈ S} be the set of remaining sets.

Let us argue that for any S ∈ R, S ∩ (
⋂
G) is empty. To do so, suppose it was not, and

let y be the �-min of that intersection. By Lemma 25, y is the �-min of the intersection
of h − 1 sets in F . Moreover, by definition of R and G, b∗(F) ≺ y. This contradicts the
definition of b∗(F). Thus, S ∩ (

⋂
G) is empty.

Two cases arise:
1. (|R| ≥ p− h+ 1) We show that R has the (p− h+ 1, q− h+ 2)-property. Indeed, choose

any p − h + 1 members from R together with the h − 1 members from G. We know
from the (p, q)-property of F that there exists a subfamily E ⊂ R ∪ G of size q whose
members have a non-empty common intersection. E cannot contain all elements of G,
as q > h− 1 = |G| and the intersection of all members of G together with any member
of R is empty. Thus, E contains at least q − h + 2 members of R. This shows that R
has the (p − h + 1, q − h + 2)-property. Notice that with the assumptions p > q and
(h−2)p = (h−1)(q−1)−1 which we are working under, (p−h+1, q−h+2) is admissible.
Thus, by the induction hypothesis, R can be stabbed with p−h+1−(q−h+2)+1 = p−q
elements of B.

2. (|R| < p− h+ 1) In this case, choose R as a whole together with G and p− h+ 1− |R|
other members of F . By the same reasoning as in case 1., there exists a subset of
q− (h− 2 + p−h+ 1− |R|) = |R|+ 1 + q− p members of R which intersect and can thus
be stabbed by a single element of B. The remaining |R| − (|R|+ 1 + q − p) = p− q − 1
sets can trivially be stabbed by p− q − 1 elements.

Thus, R can be stabbed by p− q elements, which implies that F can be stabbed by p− q+ 1
elements and by induction, concludes the proof. J

An almost identical proof shows the folklore result that under the weaker condition that the
nerve of F is a d-collapsible system and F has the (p, q) condition the same conclusion holds.

In proving Lemma 3, we made use of relatively few properties of compact convex sets.
These properties are (i) closure under intersection, (ii) existence of a lexicographically
minimum point, (iii) Helly’s theorem as well as (iv) the fact that the set of all points
lexicographically smaller than some point y is convex. In what follows we will actually always
consider families of sets with analogous properties, which we call Ordered-Helly systems.
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I Definition 24 (Ordered-Helly system).
An Ordered-Helly system S is a tuple (B, C,D, d,�) consisting of

a set B, called the base-set;
a family C of subsets of B, whose members are called convex sets or S-convex sets;
a family D ⊂ C whose members are called compact sets or S-compact sets;
a total order � on B;
and an integer h ≥ 2, called the Helly-number of S

with the following properties.
1. (Intersection closure)
D is closed under intersection, i.e. for all S1, S2 ∈ D we have S1 ∩ S2 ∈ D.

2. (Attainable minimum)
For all non-empty S ∈ D, there exists x ∈ S such that for all y ∈ S, x � y. This x is
necessarily unique and we call x the �-min of S. We define the �-max of a set similarly,
if it exists.

3. (Convex order)
For all t ∈ B, we have {x ∈ B | x � t and x 6= t} ∈ C.

4. (Helly property)
If F ⊂ C is a finite subset of n ≥ d + 1 sets of C such that every subfamily of d + 1
members of F has a non-empty common intersection, then all members of F have a
non-empty common intersection.

Let us show that this is indeed a stronger set of conditions, in a proof analogous to that
of Lemma 3.

I Lemma 25. Let S = (B, C,D, d,�) be an Ordered-Helly system. Then (B,D, d,�) is an
Ordered-d-collapsible system.

Proof. Let F ⊂ D be a family of n ≥ h sets in D such that I :=
⋂
F is non-empty. Let

x be the �-min of I (which exists by the properties of intersection closure and attainable
minimum).
Let Sx denote {y ∈ B | y � x and y 6= x}, which is a S-convex set by the property of convex
order. It is also disjoint from I as � is a total order. By the Helly property, there exists a
subfamily of d+ 1 members of F ∪{Sx} with an empty common intersection. These members
have to include Sx, as all members of F have a non-empty common intersection. Let G ⊂ F
be the family consisting of the remaining d sets and let xG be the �-min of I ′ :=

⋂
G (which

is a non-empty S-compact set). We know that xG � x because x ∈ I ′. If we now suppose
xG 6= x this implies that xG ∈ Sx and contradicts the fact that I ′ ∩ Sx = ∅. Thus, xG = x

and (B,D, d,�) is an Ordered-d-collapsible system. J

We immediately have the following corollary.

I Corollary 26. Let S = (B, C,D, h,�) be an Ordered-Helly system. Let (p, q) be a d-
admissible pair of integers. Let F be a finite family of non-empty sets of D. Suppose that F
has the (p, q)-property. Then there exist p− q + 1 elements of B stabbing F .

It should be mentioned that the existence of a Helly number alone is not enough to show
such a result. Alon et al. [4] give an example of a set system with Helly number 2 but no
general (p, q)-theorem. Note also that many other classical results about the intersection
patterns of convex sets, including Alon and Kleitmann’s (p, q)-Theorem, also follow from the
notion of d-collapsibility and thus hold for Ordered-d-collapsible and Ordered-Helly systems
(see the survey by Tancer [39]).
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Figure 2 Counterexample to the claim that axis aligned rectangles in the plane with the (3, 2)-
property can always be stabbed with two points.

I Remark. For such a result to hold, none of the conditions 1. to 3. of Ordered-Helly systems
are necessary in the sense that there exist families of sets violating all three for which a
Hadwiger-Debrunner type theorem does hold. Consider for example the family of all open
disks in the plane with the lexicographical order on points. Neither intersection closure,
attainable minimum nor convex order holds in this case, but of course the Hadwiger-Debrunner
theorem still applies as these are a special case of convex sets.

However, condition 3. (convex order) is in fact necessary in the sense that dropping it
while maintaining the others unchanged would make Corollary 26 false. Otherwise, we could
for example prove that a family of axis aligned rectangles in the plane with the (3, 2) property
can be stabbed with two points. This is false, as Figure 2 illustrates.

6 Computing stabbing points in an Ordered-d-collapsible system

The proof we saw once again leads to an algorithm computing stabbing elements of a family
of S-compact sets with the (p, q)-property for an admissible pair (p, q), given we have access
to some oracles. We will write the run-times in terms of the description complexity of a
set, which depends on the exact context. Thus, for a S-compact set S, let #S denote this
complexity (of at least 1), and for a family F of S-compact sets, let #F :=

∑
S∈F #S.

Consider an Ordered-d-collapsible system S = (B,D, d,�) (for a constant d) and suppose
we have access to the following oracles.

For two elements b1, b2 ∈ B, we can test b1 � b2 in constant time.
For a family of at most d S-compact sets F ⊂ D, we can test if the sets in F have a
common intersection and compute the �-min of that intersection if it is non-empty in
O(#F) time.
For a S-compact set S ∈ D and a point b ∈ B we can test if b ∈ S in O(#S) time.

We could naturally consider other run-times for these oracles. We only specify them in
order to showcase an example of run-time analysis which is tighter than if we had worked
with general run-times and swapped in concrete functions afterwards (and matches the case
of convex polytopes in Rd for small d). Other run-times might require other specialized
forms of analysis.

Now, let F ⊂ D be a family of S-compact sets. Among all points in B defined as the
�-min of the intersection of h− 1 sets in F , let b∗(F) be the �-max of those.
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Let us state two lemmas which will be useful for our algorithm. The proofs are identical
to those of Lemma 4 and Lemma 5 and we repeat them only for the reader’s convenience.

I Lemma 27. We can compute b∗(F) in O(#F · |F|d−1) time.

Proof. We can compute b∗(F) by testing for intersection in every subfamily G of F of size d
and computing the �-min of that intersection if it is non-empty.

If we consider some fixed subfamily G, the computation for that subfamily will cost at
most c ·#G for some constant c which doesn’t depend on G. Charge this cost to the sets
S ∈ G by attributing a cost of c ·#S to a set S.

Now, consider the cost charged to some fixed set S for the whole computation. As S
appears in no more than |F|d−1 subfamilies of size h−1, its total cost charge is upper bounded
by c ·#S · |F|d−1. Summing across all sets S ∈ F , we get a total cost of O(#F · |F|d−1). J

I Lemma 28. Suppose there exists some subfamily G ⊂ F of size k + 1 such that all sets
in G have a common intersection, where k is a known parameter. We can compute |F| − k
points in B stabbing F in O(#F · |F|d) time.

Proof. If k + 1 ≤ d, then we can test every subfamily of size k + 1 for common intersection
and compute its �-min for a total cost of O(#F · |F|k+1) ≤ O(#F · |F|d).

If k + 1 > d, then we know from Lemma 25 that the �-min of the intersection of all
sets in G is also the �-min of the intersection of some d sets in F . Thus, one can find a
point stabbing at least k + 1 sets by computing the �-min point for each subfamily of size d
(in O(#F|F|d) time) and counting the number of sets intersected for each of the O(|F|d)
computed points (in O(#F|F|d) time as well).

As soon as we find a point b stabbing at least k + 1 sets, we return b along with the
�-min of every set in F which is not stabbed by b. J

With these algorithms, we can now prove the following.

I Theorem 29. Let F be a family of S-compact sets with the (p, q)-property. Suppose we
have access to the relevant oracles described above. We can compute a set of at most p− q+ 1
elements stabbing F in time

O((p− q + 1)(#F)d + (#F)pd).

Proof.
Consider the following algorithm.
1. Reduce p and q (as done in the proof of Corollary 26) to reach the case where p = q = d+1

or the case where p > q and (d− 1)p = d(q − 1)− 1.
2. Compute b∗(F) and choose it as one of the stabbing points. Now, remove from F all

the sets which are stabbed by this point. If there are any remaining sets then either
|F| ≥ p − d and F satisfies the (p − d, q − d + 1)-property, where (p − d, q − d + 1) is
d-admissible, or F consists of p− q + k sets, k < q − d, where some k + 1 of them have a
common intersection.

3. In the first case, we can continue inductively.
4. In the second case we can trivially stab the remaining sets using p− q elements.

• Correctness:
The correctness of the algorithm follows from the proof of Corollary 26. The only detail that
needs some additional scrutiny is the correctness for the base case p = q = d+ 1. Notice that
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in this case all sets have a common intersection and the definition of an Ordered-d-collapsible
system ensures that b∗(F) stabs the whole family F .
• Runtime:

We know that Step 1 can be done in O((#F)d) time and has to be done at most (p− q + 1)
times. We also know from Lemma 28 that Step 4 can be done in O((#F)d + (#F)pd) time.
This step is only done once.

Thus, we get a total runtime of

O((p− q + 1)(#F)d + (#F)pd). J

With access to the right oracle, we could for example apply Lemma 9 analogously to what
we did for convex polytopes in the Euclidean setting and get the corresponding speedup.

7 Examples of Ordered-Helly systems

Until now, the only Ordered-Helly system we have seen is the one corresponding to com-
pact convex sets in Rd. We will see that this structure does have some other interesting
representatives and is not restricted to this single example (in which case the usefulness of
introducing it would have been doubtful).

7.1 Hadwiger-Debrunner type results for subsets of Rd

Let us start by stating and proving some Hadwiger-Debrunner type results for sets which
are defined as the intersection of a compact convex set in Rd with a subset S ∈ R. De Loera
et al. [16] introduced the notion of S-Helly number, which can be defined as follows.

I Definition 30. Let S be a subset of Rd. The S-Helly number, denoted by h(S), is the
smallest integer k > 0 such that the following holds:
Given a finite family F of convex sets in Rd, if in every subfamily of F of size k all sets
share a point in S, then all sets in F share a point in S.
If no such k exists, then h(S) =∞.

One of the first results concerning S-Helly numbers was discovered by Doignon [17], and
is the case S = Zd.

I Theorem 31 (Doignon). Let F be a family of n ≥ 2d convex sets in Rd. If in every
subfamily of F of size 2d all sets share a point in Zd, then all sets in F share a point in Zd.

Alon et al. [4] showed that the nerve of such families is 2d − 1-collapsible, which among other
things implies a Hadwiger-Debrunner type (p, q)-theorem.

In a paper by Hoffman [26] a mixed-integer version of this theorem is stated, which
generalizes both Helly’s theorem and Doignon’s version. It was later rediscovered and proved
in detail by Averkov and Weismantel [6].

I Theorem 32 (Mixed-Integer Helly). Let F be a family of n ≥ (d + 1)2k convex sets in
Rd+k, where d, k ≥ 0 and d + k ≥ 1. If in every subfamily of F of size (d + 1)2k all sets
share a point in Rd × Zk, then all sets in F share a point in Rd × Zk.

Let us show that a corresponding Hadwiger-Debrunner-type theorem holds.

I Theorem 33 (Mixed-Integer Hadwiger-Debrunner).
Let d, k ≥ 0 be integers such that d+ k ≥ 1. Let (p, q) be a ((d+ 1)2k − 1)-admissible pair.
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Let F be a finite family of sets obtained as the intersection of Rd×Zk with a compact convex
set in Rd+k. Suppose that F has the (p, q) property. Then there exist p − q + 1 points in
Rd × Zk stabbing F .

Proof. Let B = Rd × Zk, let C be the family of all sets obtained as the intersection of B
with a convex set in Rd+k and let D be the family of all sets obtained as the intersection
of B with a compact convex set in Rd+k. Then, using Theorem 32, it is easy to check that
(B, C,D, (d+ 1)2k − 1,≤lex) is an Ordered-Helly system. Thus, using Corollary 26, we get
the result. J

More generally, every upper bound on an S-Helly number leads to a corresponding
Hadwiger-Debrunner version if S is closed in Rd. In particular, this applies to some of the
bounds obtained by De Loera et al. [16] for several other families of sets S. The corresponding
algorithmic results also follow, provided we have access to the required oracles.

7.2 Abstract convex geometries
Let us now explore how the structure of Ordered-Helly systems relates to the structure of
abstract convex geometries as introduced by Edelman and Jamison [19]. Convex geometries
are an abstraction capturing the basic combinatorial structure of classical convexity in a similar
manner to matroids capturing the basic combinatorial properties of linear independence.
Convex geometries appear in many contexts outside of convex sets such as graph theory or
order theory. We refer the interested reader to the book of Edelman and Jamison [19] or to
Chapter III in the book of Korte et al. [30] for an in-depth overview. We will only go over
the basic definitions and theorems needed for our purpose, which can all be found in these
two sources.

Some background

For the following definitions, it is useful to imagine the operator τ as analogous to the convex
hull operator on a point set.

I Definition 34. Consider some finite set E and a family N of subsets of E. Let τ be the
operator defined on subsets of E as τ(A) =

⋂
{X | A ⊂ X, X ∈ N}. We say that (E,N ) is

a convex geometry if it has the following properties.
1. ∅ ∈ N , E ∈ N .
2. X,Y ∈ N implies X ∩ Y ∈ N .
3. If y, z 6∈ τ(X) and z ∈ τ(X ∪ {y}) then y 6∈ τ(X ∪ {z}).
The sets in N are called convex.

Extreme points are defined in a similar way way as in the Euclidean setting:

IDefinition 35. For a set A ⊂ E, we say that x ∈ A is an extreme point of A if x 6∈ τ(A\{x}).
The set of extreme points of A is denoted by ex(A).

A set X ⊂ E is called free if X = ex(X).

We will use the following notion.

I Definition 36. A sequence x1, . . . , xk of points of E is called a shelling sequence if for all
1 ≤ i ≤ k, xi is an extreme point of E \ {x1, . . . , xi−1}.
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A shelling sequence can be thought of as a way to reach a convex set by starting with the
whole set E and stripping away points one after the other in such a way that the set remains
convex at each step. A useful characterisation of convex sets for our purpose is the following,
where we describe a convex set via a shelling process.

I Proposition 37 ([19]). A set X ⊂ E is convex if and only if there exists a shelling sequence
x1, . . . , xk such that X = E \ {x1, . . . , xk}.

The final ingredient we need is the following Helly-type theorem for convex geometries.

I Theorem 38 ([19]). Let h(N ) denote the smallest integer k such that the following holds:
For a family F of convex sets, if every subfamily of size at most k has a non-empty

intersection, then F has a non-empty intersection.
Then the Helly number of N , h(N ), is equal to the maximum size of a free convex set.

Hadwiger-Debrunner theorem for convex geometries

We are now ready to state and prove a Hadwiger-Debrunner-type theorem for convex
geometries.

I Theorem 39. Consider a convex geometry (E,N ). Let h be the size of a maximal free
convex set and let (p, q) be an (h − 1)-admissible pair. Let F ⊂ N be a family of n ≥ p

non-empty convex sets. If F has the (p, q)-property then there exist p− q + 1 elements of E
stabbing F .

Proof. We know that ∅ is convex, thus there exist a shelling sequence S = {x1, . . . , xk} such
that ∅ = E \ S, i.e. S = E. Let for 1 ≤ i, j ≤ k, let us say that xi � xj if and only if
i ≥ j. Let 1 ≤ t ≤ k be an integer. Because {x1, x2, . . . , xt−1} is a valid shelling sequence,
{x ∈ E | x ≤ xt} is a convex set. Thus, � has the convex order property.

Let h be the maximum size of a free convex set. Then, it is easy to verify that S =
(E,N ,N , h− 1,�) also has the intersection closure and attainable minimum properties. The
Helly property (for Helly number h) is given by Theorem 38.

Thus, S is an Ordered-Helly system and we get the result from Corollary 26. J

Two examples of convex geometries

We will now give two illustrative examples of abstract convex geometries and the resulting
Hadwiger-Debrunner type results we obtain for them. One such convex geometry (arguably
the most natural) is the one obtained by taking convex hulls of subsets on a finite point set
in Rd. This is conceptually similar to the case of polytopes in Euclidean space which we
have already discussed. The following examples are perhaps not so immediately related.

We first consider the convex geometry obtained by taking subtrees of a tree.

I Proposition 40 ([19]). Let T be a tree on a set of vertices V . Let N be the family of all
sets of vertices corresponding to subtrees of T . Then (V,N ) is a convex geometry with Helly
number h(N ) = 2.

This means that for a given tree T and a given family of subtrees of T , if all pairs of
subtrees intersect at some vertex, then all subtrees share a vertex. Using Theorem 39 we can
thus get the following result.

I Corollary 41. Let T be a tree and let F be a family of subtrees of T (represented as sets
of vertices). Let (p, q) be a 1-admissible pair. Let F ⊂ N be a family of non-empty subtrees
of T with the (p, q)-property. Then F can be stabbed with p− q + 1 vertices.
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From an algorithmic point of view, let us suppose that the tree is represented as a
conventional pointer structure and that the subtrees in F are themselves represented in full
as trees. One can compute a shelling sequence of the empty tree (and thus �) by starting
with the whole tree T and choosing leaves to cut off until we reach the empty tree. This
amounts to O(|V |) preprocessing time. We can trivially find the �-min of a subtree or test
if a subtree S contains a vertex in O(|V (S)|) time. Using Theorem 29, this leads to an
algorithm finding stabbing vertices in O(|V |+ p(#F)) where #F is the sum of the number
of vertices over all subtrees in F .

Another example of convex geometry is the one obtained by taking so-called ideals of a
poset. For a poset (E,≤), we say that a set S ⊂ E is an ideal of E if for all x ∈ S and all
y ∈ E, y ≤ w ⇒ y ∈ S. Let width(E) denote the maximum size of an antichain in E. Then
the following holds.

I Proposition 42 ([19]). Let (E,≤) be a finite poset. Let F = {S ⊂ E | S is an ideal}.
Then (E,F) is a convex geometry with Helly number width(E).

Using Theorem 39 we can thus get the following result.

I Corollary 43. Let (E,≤) be a finite poset. Let (p, q) be a (width(E)− 1)-admissible pair
and let F be a family of non-empty ideals of E with the (p, q)-property. Then F can be
stabbed by p− q + 1 elements of E.

From an algorithmic point of view, the situation is similar to the one for subtrees of a
tree if we choose to represent ideals as the sets of their elements.

Conclusion

We have shown how to stab convex polygons with a total of n vertices and the (p, q)-property
(for admissible (p, q)) in expected Õ(n4/3) time with respect to n. As an intermediate step,
we compute a certain quantity x∗2, which is a Hopcroft-Hard problem, in Õ(n4/3) expected
time. While this is believed to be near optimal, finding a non-trivial lower-bound for the
original problem remains open. For the 3D case, we have an algorithm running in expected
Õ(n5/2) time with respect to n.

We have also considered other conditions which allow us to conclude that a set of polygons
can be stabbed with a fixed number of points, and applied our algorithm to those. One of
these conditions is a new generalization of Helly’s theorem in the plane in terms of holes in
the union of convex sets.

Finally, we have derived (p, q)-theorems (some of which are folklore results) along with
algorithms in other settings where Helly-type theorems are known.

A natural next step in the Euclidean setting would be to drop the restriction (d− 1)p <
d(q − 1) and find efficient algorithms for the Alon-Kleitman (p, q)-theorem. Their proof of
existence of stabbing sets of constant size uses the fractional Helly theorem, whose proof is
similar to the above proof of the Hadwiger-Debrunner (p, q)-theorem. It is thus conceivable
that similar ideas could be applied to this more general case. Another natural question is to
find an efficient algorithm to test whether a set of convex polygons in the plane has the (p, q)
property for given p and q. Ideally, such an algorithm would run in polynomial time, with
an exponent which does not depend on p or q.
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Appendices
A From compact convex sets to general convex sets in the

Hadwiger-Debrunner theorem

In the main body of this paper, we have given a proof of the Hadwiger-Debrunner theorem
for compact convex sets only, claiming that this was done without loss of generality. To see
this let us describe how to reduce the general case to this one.

Let F = {S1, S2, . . . , Sn} be a finite family of convex sets in Rd with the (p, q)-property
for some admissible pair (p, q). Let us construct a new family of compact convex sets
F ′ = {S′1, S′2, . . . , S′n} as follows:

For every subfamily G ⊂ F of sets with non-empty common intersection, choose pG to be
a point in that intersection, and let P denote the set of all such chosen points.
For i ∈ {1, . . . , n}, let S′i be the convex hull of Si ∩ P.

It is clear that F ′ consists of compact convex sets and that whenever some subfamily
G ⊂ F of sets have a common intersection, the corresponding sets in F ′ also do. This means
that F ′ has the (p, q)-property. Moreover, for i ∈ {1, . . . , n} we know that S′i ⊂ Si. If we
can stab F ′ with p− q + 1 points, the same holds for F . Thus, if the Hadwiger-Debrunner
theorem holds for compact convex sets, it also holds for general convex sets.

B Adapting the Bentley-Ottmann sweep-line algorithm

Here we briefly describe how to adapt the Bentley-Ottmann sweep-line algorithm [8] to solve
the following problem in O(n2 log(n)) time.

I Problem 44. Given a family of convex polygons in the plane with a total of n vertices,
compute a point p stabbing as many polygons as possible.

Imagine a vertical line sweeping through the plane, stopping each time it reaches the
beginning of an edge, the end of an edge or the intersection of two edges, which we call an
event (for simplicity, assume the events are separated along the horizontal axis by shifting
them infinitesimally). During the whole sweep, we keep track of the edges crossing our sweep
line ordered according to the y coordinate of their intersection with the sweep line. This
forms the general idea behind the Bentley-Ottmann algorithm.

More specifically, the algorithm maintains a self-balancing Binary Search Tree (BST) of the
segments intersecting the sweep line (this line is conceptual only and is not explicitly stored
in any manner) as well as a priority queue of events to come. At each stage neighbouring
edges on the sweep line are tested for future intersection and this intersection is added to the
priority queue if it exists. Then the next event in the priority queue is considered and the
imaginary sweep line is moved to that event. If this is the beginning or the end of an edge,
this edge is respectively added to or deleted from the BST. If this event is the intersection
of two edges, their positions in the BST are swapped. All these operations can be done in
O(log(n)) time with the usual data structures for priority queues and self-balancing BSTs.
Thus, as there are at most O(n2) events, the whole sweep takes O(n2 log(n)) time.

Now, we can partition the edges of the polygons into two classes: those corresponding to
the upper hull and those corresponding to the lower hull. We can then augment each node
in the BST with the following information: for each node v store the number of leaves which
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are lower hull edges and upper hull edges in the subtree rooted at v. These quantities can
easily be maintained in O(log(n)) time per operation performed on the BST.

When considering a new event, we can now easily compute the number of polygons
stabbed by the corresponding point by taking the number of upper hull edges above it and
subtracting the number of lower hull edges above. Both of these latter quantities can be
computed in O(log(n)) time by travelling up the BST from the vertex of interest to the root.

To compute a point p stabbing as many polygons as possible, it is enough to consider
only the points which we have defined as events. Thus, with this modified algorithm we can
find the event point stabbing the largest number of polygons and thus solve the considered
problem in O(n2 log(n)) time.

C Proof of Theorem 7

Here we give pointers to prove Theorem 7. The methods used here are standard in the field
of geometric range queries and are variations on proofs by Matoušek [31] using results by
Chan [12]. Although we recommend the lecture of these papers for a better understanding of
these approaches, we give some details here for the sake of completeness.

Recall the statement of the theorem.

I Theorem 7. Let S be a set of n objects, k a constant, and φ1, φ2, . . . , φk mappings from
S to Rd. Let φS be the function which maps k-tuples of halfspaces H1, H2, . . . ,Hk of Rd to
the set

φS(H1, H2, . . . ,Hk) := {s ∈ S | φ1(s) ∈ H1, φ2(s) ∈ H2 . . . , φk(s) ∈ Hk}.

Suppose we have computed the point sets φ1(S), . . . , φk(S) and let n ≤ m ≤ n/ logω(1) n. Then
we can preprocess the point sets in O(n logk n+m) time such that |φS(H1, H2, . . . ,Hk)| can
be computed in O((n/m1/d)(logn)2(k+(k−d−1)/d)(log logn)1/d) expected time for any k-tuple
of halfspaces.

From now on, d, k and the mappings φ1, . . . , φk are fixed. For the sake of simplicity
we suppose that all objects s ∈ S we consider are of constant size and that φi(s) can be
computed in constant time (but we could precompute all these points as a preprocessing
step and then work only with the points φi(s)). For any finite set of objects S and any
1 ≤ k′ ≤ k′′ ≤ k, we let φk

′,k′′

S denote the function which maps (k′′ − k′ + 1)-tuples of
halfspaces Hk′ , . . . ,Hk′′ of Rd to

φk
′,k′′

S (Hk′ , . . . ,Hk′′) := {s ∈ S | φk′(s) ∈ Hk′ , . . . , φk′′(s) ∈ Hk′′}.

When k′ = k′′, we also use the notation φk′

S := φk
′,k′′

S .
We need the following result by Matoušek [31].

I Theorem 45 ([31, Theorem 5.1]). For any 1 ≤ k′ ≤ k, any set of n objects S and any
parameter r < n, we can build a datastructure in O(nrd−1) time with the following properties.

There are t ∈ O(log r) collections of subsets of S, C1, C1, . . . , Ct such that Ci contains
O(ρi) subsets of size at most n/ρi (where ρ > 1 is a constant dependent on r). We call
all the subsets in these collections the inner sets.
There are an additional O(rd) subsets of S, each of size at most n/r, called the remainder
sets. We denote the collection of these subsets as R.

CGT
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For any halfspace H, we can in O(log r) time return pointers to t+ 1 of these subsets,
S1 ∈ C1, S2 ∈ C2, . . . , St ∈ Ct and SR ∈ R, all disjoint, such that

φk
′

S (H) = S1 ∪ S2 ∪ · · · ∪ St ∪ φk
′

SR
(H).

Note that the inner and remainder sets are not stored individually in full but implicitly as a
partition tree structure.

We also need this other result by Chan [12].

I Theorem 46 ([12]). For any 1 ≤ k′ ≤ k, any set of n objects S, we can build a datastructure
in O(n logk

′
n) time which can then compute |φ1,k′

S (H1, . . . ,Hk′)| in O(n(d−1)/d logk
′−1 n)

expected time for any k′-tuple of halfspaces.

We can now prove the following, by adapting a proof by Matoušek [31, Theorem 6.1].

I Theorem 47. For any, 1 ≤ p ≤ k, any set of n objects S, we can build a datastructure
in time O(nd logp−d−1 n log logn) which can then compute |φ1,p

S (H1, . . . ,Hp)| in O(logp n)
expected time for any p-tuple of halfspaces.

Proof. The proof is by induction. Let us consider the base case p = 1. We use the
datastructure from Theorem 45 with k′ = 1 and r = n/ logd/(d−1) n. To each inner set
we add an attribute representing the size of the set. To each remainder set we attach
the corresponding datastructure from Theorem 46 with k′ = 1. We can then compute
|φ1
S(H)| by using the primary datastructure to find the decomposition into inner sets and

remaining set SR given by Theorem 45, and use the secondary attached datastructure to
compute |φ1

SR
(H)|. Because there are O(rd) remainder sets, all of size at most n/r, the total

preprocessing time is O(nrd−1 + rd(n/r) log(n/r)) ⊂ O(nd log1−d−1 n log logn). Because in
each query there is only one remainder set to consider, the total expected query time is
O(log r + (n/r)(d−1)/d) ⊂ O(logn). Thus the claim holds for p = 1.

Let us now suppose it holds for 1 ≤ p− 1 < k and show it holds for p. We again use the
datastructure from Theorem 45 with r = n/ logd/(d−1) n, this time with k′ = p. To each
inner set we attach the corresponding datastructure we inductively suppose exists for p− 1.
To each remainder set we attach the corresponding datastructure from Theorem 46 with
k′ = p. Using the knowledge about the distribution of sizes of the inner sets in Theorem 45,
the total preprocessing time will be

O

nrd−1 + rd(n/r) logp(n/r) +
O(log r)∑
i=1

ρi
(
n

ρi

)d
logp−1−d−1 n log logn


⊂ O

nd log−1 n+ nd logp−d−2 n(log logn)p+1 + nd logp−d−2 log logn
O(log r)∑
i=1

(ρ1−d)i


⊂ O
(
nd logp−d−1 n log logn

)
.

The total expected query time will be

O
(

log r + log r logp−1 n+ (n/r)(d−1)/d logp−1(n/r)
)

⊂ O (logp n) .

Thus by induction, the claim holds. J
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For the final proof we need some other results by Chan [12], which we summarize in the
following theorem.

I Theorem 48 ([12]). For any set of n objects S and any 1 ≤ B ≤ n/ logω(1) n, we can build
a datastructure in O(n logk n) time with the following properties.

There are O((n/B) logk−1 n) subsets of S. We denote their collection C. The subset of C
consisting of sets of size at most B is denoted as B.
For any k-tuple of halfspaces H1, . . . ,Hk, we can compute in O((n/B)(d−1)/d logk−1 n)
expected time pointers to t ∈ O((n/B)(d−1)/d logk−1 n) sets of C, denoted as C1, C2 . . . Ct
and another t′ ∈ O((n/B)(d−1)/d logk−1 n) to sets of B, denoted as S1, S2 . . . St′ , all
disjoint. Moreover they are such that

φS(H1, . . . ,Hk) = (C1 ∪ C2 ∪ · · · ∪ Ct)∪
(
φS1(H1, . . . ,Hk) ∪ · · · ∪ φSt′ (H1, . . . ,Hk)

)
.

We are now ready for the final proof, which is again a minor adaptation of a proof by
Matoušek [31, Theorem 6.2].

Proof of Theorem 7. We use the datastructure from Theorem 48, for some unspecified B.
To each set in C, we add an attribute representing the size of the set. To each set in B, we
also attach the datastucture we get from Theorem 47 with p = k. Because each set in B is of
size at most B and there are O((n/B) logk−1 n) such sets, the total preprocessing time will
be O(n logk n+m), where

m := (n/B) logk−1 n+ (n/B)(logk−1 n)Bd(logk−d−1 B) log logB

∈ O
(
Bd−1n(log2k−d−2 n) log logn

)
.

We can make m vary between n logk−1 n and nd/ logω(1) n by having B vary between 1 and
n/ logω(1) n (but we can still choose m < n logk−1 n in the statement of the theorem, as the
n logk n term then dominates the preprocessing). The total expected query time will be

O
(

(n/B)(d−1)/d + (n/B)(d−1)/d(logk−1 n) logk B
)

⊂ O
(

(n/B)(d−1)/d) logk−1 n log2k−1 n
)
.

By rewriting this in terms of m instead of B we get an expected query time of

O
(

(n/m1/d) log2(k+(k−d−1)/d)) n(log logn)1/d
)
.

J
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