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Abstract
The critical covering area of a triangle T is the value A∗(T ) such that (1) each set of disks with a
total area of at least A∗(T ) permits a covering of T and (2) for each A− < A∗(T ), there is a set
D− of disks with a total area of A− such that D− cannot cover T . The critical covering coefficient
C∗(T ) of T is the ratio A∗(T )/∥T ∥ between the critical covering area of T and the area of T .

In this work, we prove that the critical covering coefficient for isosceles triangles with an apex angle
α ≤ π/4 is π tan(α/2)

sin2(α) , and the covering coefficient for isosceles triangles with an apex angle α ≥ π/2

is π tan(α/2). The critical covering coefficient for equilateral triangles is π
√

3/2 ≈ 2.7207 . . .; the
comparison with the recently established critical covering coefficient for squares ( 195π

256 ≈ 2.39301 . . .,
as shown by Fekete et al. in 2020) indicates the additional difficulty of covering triangles. As a
corollary, we obtain that π

h
is the critical covering area of obtuse triangles with inner angles α1 ≥ π

2
and π

3 ≥ α2, α3 and a height of h passing the corner with an inner angle of α1.
Our proofs are constructive, i.e., we provide corresponding worst-case optimal covering algorithms.
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1 Introduction

Given a set of (not necessarily equal) disks, is it possible to arrange them so that they
completely cover a given region, such as a triangle? Covering problems of this type are
of fundamental theoretical interest, but also have a variety of different applications, most
notably in sensor networks, communication networks, wireless communication, surveillance,
robotics, and even gardening and sports facility management.

If the total area of the disks is too small, it is clear that completely covering the region is
impossible. On the other hand, if the total disk area is sufficiently large, finding a covering
seems intuitively easy; however, for thin triangles, a major fraction of the covering disks may
be useless, so a relatively large total disk area may be required. The same issue is of obvious
importance for applications: What fraction of the total cost of disks can be put to efficient
use for covering? This motivates the question of characterizing a critical threshold: Find the
minimum value for which any set of disks with total area at least A can cover an equilateral
triangle or a halfsquare, i.e., an isosceles, right-angled triangle? In this paper we provide
worst-case optimal algorithms for both scenarios.
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4:2 Worst-Case Optimal Covering of Triangles by Disks

1.1 Related work
Like many other packing and covering problems, disk covering is typically quite difficult,
compounded by the geometric complications of dealing with irrational coordinates that arise
when arranging circular objects. This is reflected by the limitations of provably optimal
results for the largest disk, square or triangle that can be covered by n unit disks, and
hence, the “thinnest” disk covering, i.e., a covering of optimal density. As early as 1915,
Neville [35] computed the optimal arrangement for covering a disk by five unit disks, but
reported a wrong optimal value; much later, Bezdek[6, 7] gave the correct value for n = 5, 6.
As recently as 2005, Fejes Tóth [43] established optimal values for n = 8, 9, 10. The question
of incomplete coverings was raised in 2008 by Connelly who asked how one should place n

small disks of radius r to cover the largest possible area of a disk of radius R > r. Szalkai [42]
gave an optimal solution for n = 3. For covering rectangles by n unit disks, Heppes and
Mellissen [26] gave optimal solutions for n ≤ 5; Melissen and Schuur [32] extended this for
n = 6, 7. See the website by Friedman [23] for illustrations of the best known solutions for
n ≤ 12. Along similar lines, covering equilateral triangles by n unit disks has also been
studied. Melissen [31] gave optimality results for n ≤ 10, and conjectures for n ≤ 18; the
difficulty of these seemingly small problems is illustrated by the fact that Nurmela [36] gave
conjectured optimal solutions for n ≤ 36, improving n = 13 from Melissen. Carmi et al. [10]
considered algorithms for covering point sets by unit disks at fixed locations. There are
numerous other related problems and results; for relevant surveys, see Fejes Tóth [14] (Section
8), Fejes Tóth [44] (Chapter 2), Brass et al. [9] (Chapter 2) and the book by Böröczky [8].

Even less is known for covering by non-uniform disks, with the majority of previous
research focusing on algorithmic aspects. Alt et al. [3] gave algorithmic results for minimum-
cost covering of point sets by disks, where the cost function is

∑
j rα

j for some α > 1, which
includes the case of total disk area for α = 2. Agnetis et al. [2] discussed covering a line
segment with variable radius disks. Along similar lines, Abu-Affash et al. [1] studied covering
a polygon minimizing the sum of areas, and Bánhelyi et al. [4] gave algorithmic results for
the covering of polygons by variable disks with prescribed centers.

For relevant applications, we mention the survey by Huang and Tseng [27] for wireless
sensor networks, the work by Johnson et al. [28] on covering density for sensor networks, the
algorithmic results for placing a given number of base stations to cover a square [11] and a
convex region by Das et al. [12]. For minimum-cost sensor coverage of planar regions, see
Xu et al. [45]; for wireless communication coverage of a square, see Singh and Sengupta [40],
and Palatinus and Bánhelyi [38] for the context of telecommunication networks.

The analogous question of packing a set of unit disks into a square has also attracted
considerable attention. For the case of k = 13, the optimal value for the densest square
covering was only established in 2003 [22], while the optimal value for 14 unit disks is still
unproven; densest packings of n disks in equilateral triangles are subject to a long-standing
conjecture by Erdős and Oler from 1961 [37] that is still open for n = 15. For other
examples of mathematical work on densely packing relatively small numbers of identical
disks, see [24, 30, 20, 21], and [39, 29, 25] for related experimental work. The best known
solutions for packing equal disks into squares, triangles and other shapes are continuously
published on Specht’s website http://packomania.com [41].

The critical density for packing (not necessarily equal) squares into a unit square was
introduced in 1967 by Moon and Moser [33], who used a shelf-packing approach to establish
the value of 1/2. Establishing the critical packing density for (not necessarily equal) disks in
a square was proposed by Demaine, Fekete, and Lang [13] and solved by Morr, Fekete and
Scheffer [34, 19]. Using a recursive procedure for cutting the container into triangular pieces,

http://packomania.com
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they proved that the critical packing density of disks in a square is π
3+2

√
2 ≈ 0.539; see the

video [5] for an animated overview. They also established the critical packing density for
circles in a non-acute triangle with side lengths x, y, and y as

ϕt = π

√
(x + y − z)(z + x − y)(y + z − x)

(x + y + z)3 . (1)

More recently, Fekete, Keldenich and Scheffer [17] established the critical packing densities
for packing disks into disks as 1/2. For packing squares into disks, Fekete et al. [16] proved
that the critical density for packing squares into a disk is 8/5π ≈ 0.509 . . ..

Closely related to this paper is the work by Fekete et al. [15] that provides a full characteri-
zation of the critical area A∗(λ) that is sometimes necessary and always sufficient for covering
a λ × 1 rectangle with λ ≥ 1: There is a threshold value λ2 =

√√
7/2 − 1/4 ≈ 1.035797 . . .,

such that for λ < λ2 the critical covering area A∗(λ) is A∗(λ) = 3π
(

λ2

16 + 5
32 + 9

256λ2

)
, and

for λ ≥ λ2, the critical area is A∗(λ) = π(λ2 + 2)/4; these values are tight. For the special
case λ = 1, i.e., for covering a unit square, the critical covering area is 195π

256 ≈ 2.39301 . . ..
See Theorem 4 and Lemma 5, and the video [18] for a detailed visualization.

1.2 Our results

We are given a triangular container T . For a set D = {r1, . . . , rn} of radii r1 ≥ r2 ≥ · · · ≥ rn,
we want to decide whether there is a placement of n disks with radii r1, . . . , rn on T , such
that every point x ∈ T is covered by at least one disk.

The critical covering area of a shape S is the value A∗(S) such that (1) each set of disks
with total area of at least A∗(S) permits a covering of S and (2) for each A′ < A∗(S), there
is a set D− of disks with total area A′ such that D− cannot cover T . The critical covering
coefficient C∗(S) of S is the ratio A∗(S)/∥S∥ of the critical covering area of S and the area of
S.

▶ Theorem 1. The critical covering coefficient of isosceles triangles with apex angle 0 < α ≤
π/4 is π tan(α/2)

sin2(α) .

▶ Theorem 2. The critical covering coefficient of equilateral triangles is 2π√
3 .

▶ Theorem 3. For α ≥ π/2, the critical covering coefficient for an isosceles triangle with
apex angle α is π tan(α/2).

2 Preliminaries

For any set D of disks, the total disk area is A(D) := π
∑

r∈D r2. The weight of a disk of
radius r is r2, and w(D) := A(D)

π is the total weight of D.
For proving our results, we use Greedy Splitting for partitioning a set of disks into

two sets whose weight differs by at most the weight of the smallest disk in the heavier set:
After sorting the disks by decreasing radius, we start with two empty sets and continue to
place the next disk in the set with smaller total weight.

CGT



4:4 Worst-Case Optimal Covering of Triangles by Disks

2.1 Critical covering area for rectangles
In a recent paper [15], we give a complete characterization of the critical covering area for
arbitrary rectangles, as follows.

▶ Theorem 4 ([15], Theorem 1). Let λ ≥ 1 and R a 1 × λ-rectangle. For λ2 =
√√

7
2 − 1

4 ≈
1.035797 . . ., the critical covering area of R is

A∗(λ) =

3π
(

λ2

16 + 5
32 + 9

256λ2

)
if λ < λ2,

π λ2+2
4 otherwise.

The proof of Theorem 4 is constructive, i.e., it yields an efficient worst-case optimal
algorithm for covering arbitrary 1 × λ-rectangles. This algorithm is worst-case optimal for
every choice of λ.

Furthermore, in [15], we prove the following lemmas which provide improved, i.e., decreased
critical covering area under the assumption that each disks’ weight upper-bounded by some
threshold.

▶ Lemma 5 ([15], Lemma 3). Let σ̂ := 195
√

5257
16384 ≈ 0.8629. Let σ ≥ σ̂ and E(σ) :=

1
2

√√
σ2 + 1 + 1. Let λ ≥ 1 and D = {r1, . . . , rn} be any collection of disks with σ ≥ r2

1 ≥

. . . ≥ r2
n and w(D) =

n∑
i=1

r2
i ≥ E(σ)λ. Then D can cover a rectangle R of dimensions λ × 1.

▶ Lemma 6 ([15], Lemma 4). Let R be an ℓ × s-rectangle with ℓ ≥ s. Let D be a set of disks
such that the largest disk satisfies r1 ≤ 0.375s. Then D can cover R if its total area A(D) is
at least 0.61πℓs.

2.2 Computer-assisted proofs via interval arithmetic
For some special cases of our proofs, we make use of computer assistance by applying interval
arithmetic to prove certain inequalities. Generally, to prove an inequality c ≤ f(x1, . . . , xk) ≤
d for some fixed function f : Rk → R, constants c, d ∈ R and variables x1, . . . , xk for all values
(x1, . . . , xk) ∈ [a1, b1] × · · · × [ak, bk] for some bounds a1, b1, . . . , ak, bk ∈ R, we subdivide the
input space [a1, b1] × · · · × [ak, bk] into sufficiently many pieces which together cover the
entire input space. This can be done, for instance, by subdividing each of the input intervals
[ai, bi] into some number ki of pieces of equal width, resulting in k1 · · · kk pieces in total. For
each piece P = [p1, q1] × · · · × [pk, qk], we then evaluate

f([p1, q1], . . . , [pk, qk]) :=
[

inf
xi∈[pi,qi]

f(x1, . . . , xk), sup
xi∈[pi,qi]

f(x1, . . . , xk)
]

.

and check whether the resulting interval is contained in [c, d]. If this succeeds for all pieces,
then clearly the inequality must hold for all input values. For monotonic functions, evaluating
them on an interval can be done by evaluating the function at the boundaries. Note that we
may use any interval I ⊇ f([p1, q1], . . . , [pk, qk]) instead of the exact bounds on f , as long as
I ⊆ [c, d]. For instance, to evaluate a function f(x) = g(x)−h(x) on x ∈ [a, b], we may choose
to compute [ga, gb] = g([a, b]) and [ha, hb] = h([a, b]) exactly, but use I = [ga − hb, gb − ha]
instead of the (possibly proper) subset f([a, b]). This enables us to compute lower and
upper bounds, even for intricate non-monotonic real functions, which are sufficiently tight to
prove certain inequalities of interest. It also allows us to handle numerical issues in order
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to maintain soundness in the presence of errors resulting from the use of limited precision
floating-point numbers.

For some lower-level details regarding our particular implementation of interval arithmetic,
see Section 4.4.

3 High-level overview

We independently prove each of the main theorems (Theorems 1–3) using two bounds. On
one hand, for each theorem, a worst-case instance shows that the critical covering coefficient
cannot be lower than the claimed value. On the other hand, for each theorem, we develop a
recursive algorithm to provide the matching upper bound as follows. We prove that, given
any set of disks with at least the claimed critical covering area, the algorithm is guaranteed
to compute a feasible covering of the triangle. This then proves that the claimed worst-case
instance is actually the worst case. In each case, we prove this guarantee by induction on
the number of disks, following the recursive structure of the algorithm.

In each proof, w.l.o.g., we assume the set of disks D = {r1, . . . , rn} to have a total area
that is exactly the claimed critical covering area; otherwise, we have nothing to prove or
could simply reduce the size of the input disks appropriately. Furthermore, we assume
r1 ≥ r2 ≥ · · · ≥ rn. The induction step generally consists of a case distinction, each case
corresponding to a different approach to covering the triangle with the given disks. For
instance, placing the largest disk r1 such that it covers the entire base of the triangle is often
a good approach, but it clearly only works for sufficiently large r1.

For Theorems 2 and 3, this case distinction involves only a managable number of cases
depending on r1 and sometimes r2; these proofs are carried out without computer aid. For
Theorem 1, the case distinction is more involved and depends on the apex angle α and the
three largest disks r1, r2 and r3. This results in a relatively large number of cases, for which
the analysis is carried out using computer assistance, using interval arithmetic as outlined
in Section 2.2.1 Note that our results are tight in the numerical sense, i.e., there is no gap
between the lower and the upper bound. Therefore, at any fixed precision, a method that
introduces discretization and rounding errors such as interval arithmetic cannot completely
cover all cases on its own, as it needs some amount of excess disk area to account for these
errors. For instance, cases arbitrarily close to the worst case instances cannot simply be
handled in this manner, as well as situations with apex angle α arbitrarily close to 0; we
outline how we avoid these situations in Section 3.1.

In the following, we give a high-level overview of the worst-case instances and the recursive
algorithms for each of the proofs. The details are presented in Sections 4.1–4.3.

3.1 Covering isoceles triangles with small apex angle
In this section, we sketch the proof of Theorem 1.

▶ Theorem 1. The critical covering coefficient of isosceles triangles with apex angle 0 < α ≤
π/4 is π tan(α/2)

sin2(α) .

W.l.o.g., we assume that base of the triangle has length 1 and is vertical, as depicted in
Figure 1(a); all other cases can be handled by rotating and scaling the triangle and disks. For

1 The code for all interval arithmetic-based proofs can be found at
https://github.com/phillip-keldenich/circlecover-triangles.

CGT
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1a α

h(α) = 1
2 tan(α/2)

ρ(α
) =

1

2 si
n(α

) r1

w1(α, r1)

h
1
(α
,r

1
) r1

R(α, r1)

T1

(a) (b)

Figure 1 (a) An isosceles triangle with apex a, apex angle α, base length 1 and height h(α). The
radius of the smallest disk completely covering the triangle is ρ(α) = 1/2 sin(α). (b) Placing r1 such
that it covers a trapezoid R(α, r1) of width w1(α, r1), right height 1 and left height h1(α, r1). This
placement only works for r1 ≥ 1/2; Lemma 7 shows that we can successfully place r1 in this manner
for all r1 ≥ 1/2 that we need to consider.

an isosceles triangle with apex angle α, let ρ(α) denote the radius of a single disk that barely
suffices to cover the triangle. Our worst-case instance consists of a single disk r1 = ρ(α);
making r1 any smaller would result in an instance in which the triangle cannot be covered.
The area of r1 is π

4 sin2(α) for a triangle area of 1
4 tan(α/2) , yielding a lower bound of π tan(α/2)

sin2(α)
on the critical covering coefficient.

The recursive covering algorithm that provides the matching upper bound, and thus
proves that this is indeed the worst possible case, consists of several covering routines. Each
covering routine fixes the placement of some number of disks and then possibly recurses
on remaining, scaled down versions of the input triangle that cover the entire input region
together with the placed disks. Each covering routine has an associated success criterion
that is a sufficient condition for the routine to be successful. This success criterion depends
only on α and the three largest radii r1, r2, r3. Our algorithm simply iterates through the list
of covering routines and applies the first one for which the success criterion is met. We use a
combination of manual analysis and computer-assisted interval arithmetic to prove that for
any possible combination of values α, r1, r2, r3, there is always at least one success criterion
that is met. Together with the induction hypothesis, this guarantees the overall success of
the algorithm.

In the following, we sketch the covering routines and their success criteria. The first, most
straightforward covering routine is called Base Trapezoid and places the largest disk r1 on
the leftmost point on the vertical center line of the triangle such that it covers a trapezoid
R(α, r1) including the entire base of the triangle; see Figure 1(b). It then recursively applies
the algorithm to cover the remaining triangle T1 with the remaining disks r2, . . ., if any
triangle and any disks remain.

▶ Lemma 7. For α < π/2 and any 1/2 ≤ r1 ≤ ρ(α), the area ∥R(α, r1)∥ satisfies πr2
1

∥R(α,r1)∥ ≤
π tan(α/2)

sin2(α) , i.e., covering R(α, r1) with r1 is at least as efficient as covering the entire triangle
with a disk of radius ρ(α).

Proof. The distance between the right and the left side of the trapezoid R(α, r1) is

w(α, r1) =
√

4r2
1 − 1 (cos (α) + 1)

2 + sin (α)
2 .
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r1 = 1/2 r1

Figure 2 The trapezoid covered by a disk of radius 1/2 has the same area as the maximum
isosceles triangle with apex angle α that can be covered by a disk of radius 1/2.

The height of R(α, r1) at the left side is

hℓ(α, r1) = 1 −
(√

4r2
1 − 1 cos (α) +

√
4r2

1 − 1 + sin (α)
)

tan
(α

2

)
.

Therefore, the area E(α, r1) = R(α,r1)
r2

1
of R(α, r1) covered per unit of weight of r1 is(√

4r2
1 − 1 (cos (α) + 1) + sin (α)

)(
2 −

(√
4r2

1 − 1 cos (α) +
√

4r2
1 − 1 + sin (α)

)
tan

(
α
2
))

4r2
1

.

In the following, we call E(α, r1) the efficiency of covering R(α, r1) by r1. We show
E(α, r1) ≥ sin2(α)

tan(α/2) , implying our claim. The real solutions of E(α, r1) − sin2(α)
tan(α/2) = 0 for r1

are

−1
2 ,

1
2 , − 1

2
√

sin2(α)
,

1
2
√

sin2(α)
.

Two of these are negative and can be discarded; furthermore, sin(α) is positive for all α

we have to consider, thus the only two remaining solutions can be written as r1 = 1
2 and

r1 = 1
2 sin(α) = ρ(α). This means that a covering of the trapezoid R(α, 1/2) and a covering of

an isosceles triangle with apex angle α by a single disk have the same efficiency; see Figure 2.

Intuitively, our claim follows from this by the observation that any radius in between
these two extremes covers R(α, r1) more efficiently. More precisely, for some r1 sufficiently
closely below ρ(α), E(α, r1) − sin2(α)

tan(α/2) must be positive, because the weight of r1 continues
to grow quadratically with r1, but the additional area covered by increasing r1 tends to
0 for r1 → ρ(α). Thus, by the intermediate value theorem, E(α, r1) − sin2(α)

tan(α/2) is positive
between its roots r1 = 1

2 and r1 = ρ(α); otherwise, there would have to be another root in
between. ◀

A consequence of Lemma 7 is that r1 ≥ 1/2 is a sufficient success criterion for Base
Trapezoid: the amount of disk area remaining after placing r1 is always at least as much as
an inductive application of Theorem 1 requires. This allows us to remove any case of r1 ≥ 1/2

from further consideration. Being able to bound r1 < 1/2 removes all cases that are close to
the worst case from consideration, which is, as outlined above, particularly important for the
computer-assisted part of the proof.

This allows us to focus on the case r1 < 1/2 for the remaining covering routines. The
second covering routine is called Rectangle Cover and makes use of Lemma 5; essentially,
we compute the bounding box of our triangle and apply our rectangle covering algorithm.

CGT



4:8 Worst-Case Optimal Covering of Triangles by Disks

Because the shorter side of the bounding box has length 1 and we have r1 < 1/2, we can
successfully cover the rectangle by Lemma 5 if the total disk area is large enough, i.e., if

π
4 sin2(α) ≥ 195π

256 h(α) = 195π
512 tan(α/2) . Solving for α yields a threshold below which the efficiency

guaranteed by Lemma 5 is sufficient to allow us to cover the bounding box of our triangle
instead of the triangle itself. To improve readability, we do not present the extensive exact
representation of that threshold; instead, we approximate it by the largest IEEE 754 double
value

αr = 0.3449678733707022271204323260462842881679534912109375

below the actual threshold, which is accurate to 16 digits.
This allows us to restrict our attention to α ∈ [αr, π/4], thus removing another problematic

case, namely α → 0, from consideration. For α in that range and r1 < 1/2, we use three
covering routines called Rectangle Base Cover, R1 Center and Two Large Disks,
see Figures 3 and 4. Rectangle Base Cover uses Lemma 6 to cover a rectangle Rb

RbTa

(a) (b)

r1

r2

(c)

r1

r3

r2

Figure 3 Rectangle Base Cover either covers a rectangle at the base of the triangle using
Lemma 6 (a) or r1, r2 and r3 (b,c).

at the base of the triangle with a subset of the disks as depicted in Figure 3(a). As an
alternative to Lemma 6, we also consider covering Rb using r1, r2 and potentially r3; see
Figure 3(b) and (c). In any case, disks that are not used to cover Rb are used to recursively
cover the remaining triangle. The success criterion for Rectangle Base Cover works as
follows.

Covering Rb using Lemma 6 We begin by picking a start disk ri ∈ {r1, r2, r3}; we
consider each choice. We then compute the goal width wB = ri/0.375 of Rb and height
hB = max{1, wB} of Rb. Starting with some disk ri, we iteratively collect disks Db in
non-increasing order of radius until their total weight w(Db) exceeds 0.61wBhB. We then
apply Lemma 6 to cover a rectangle R′

b ⊇ Rb of height hB and width w′
B = w(Db)

0.61hB
. If we

run out of disks in the process, the covering routine fails for the current choice of ri.
We then compute the efficiency of the covering w.r.t. the triangle area covered by R′

b;
if we cover at least sin2(α)

tan(α/2) triangle area per unit of weight, we can successfully recurse on
Ta = T \ R′

b; otherwise, the covering routine fails for the current choice of ri.
Similarly to our algorithm, our success criterion for this routine considers each choice

ri ∈ {r1, r2, r3} and computes wB and hB for it. We then check whether there is enough
weight in the remaining disks such that we cannot run out of disks before exceeding weight
0.61wBhB . Furthermore, we bound the actual weight of Db by w(Db) ≤ 0.61wBhB +r2

i . This
allows us to compute an upper bound on the actual width w′

B and thus a lower bound on the
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R1 Center

χ

χ

r1

χ

Two Large Disks

r2

r1

p2

p1

Figure 4 The covering routine R1 Center places r1 on the vertical center line of the triangle
such that r1 intersects all three sides and the distance χ that the disks protrudes from the triangle
is the same on all three sides. The covering routine Two Large Disks uses r2 to cover an isosceles
triangle containing the apex and uses r1 to cover the line segment p1p2 between the top-right corner
of the triangle covered by r2 and the bottom-right corner of the input triangle, shifting r1 as far
away from that line segment as possible.

efficiency, i.e., the disk weight used per triangle area, because the efficiency is monotonically
decreasing in w′

B . If this lower bound is at least sin2(α)
tan(α/2) , our success criterion is satisfied.

Covering Rb using r1 and r2 The maximum rectangle of height 1 that can be covered by
two disks has width

wmax(r1, r2) =
√

−16r4
1 + 32r2

1r2
2 + 8r2

1 − 16r4
2 + 8r2

2 − 1
2 .

We can thus check whether it is possible to cover Rb with two disks, and compute the
efficiency of such a covering. If the efficiency is at least sin2(α)

tan(α/2) triangle area per unit of
weight, we can successfully recurse on Ta.

Covering Rb using r1, r2 and r3 In this case, we compute the total remaining area of
disks D \ {r1, r2, r3}, and compute the height h′ of the largest isosceles triangle with apex
angle α for which Theorem 1 guarantees successful recursion. This allows us to compute the
width wB = h(α) − h′ of the remaining rectangle. We can then check whether

√
4r2

1 − w2
B +√

4r2
2 − w2

B +
√

4r2
3 − w2

B ≥ 1, i.e., whether the three disks r1, r2, r3 can cover Rb.
For details on the remaining two covering routines R1 Center and Two Large Disks,

refer to Section 4.1.

3.2 Covering equilateral triangles
In this section, we sketch the proof of Theorem 2; for details, refer to Section 4.2.

▶ Theorem 2. The critical covering coefficient of equilateral triangles is 2π√
3 .

We denote the corners of our equilateral triangle T by a, b, and c. W.l.o.g., we assume
the sides of T to have length 1; thus, T has area

√
3/4. Furthermore, we assume that bc

lies horizontal, and that a lies above bc, see Figure 5(a). All other cases can be handled by
scaling and rotating.

The worst case instance Dworst consists of two disks with radius 1/2, see Figure 5(a). If we
shrink the two disks by any ε > 0, each of them can cover at most one corner of T , leaving at
least one corner uncovered. The total area of Dworst is π/2, yielding a lower bound of 2π/

√
3
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1
2

R1 R2

eb c

aa

b c

d
o

r1

T3

r1

r2

(b) (c)

T

Figure 5 (a) The worst-case for covering equilateral triangles, consisting of two disks of radius
1/2. (b) Case (1.1), (c) Case (1.3).

on the critical covering coefficient. In the following, we sketch the recursive algorithm that
provides the matching upper bound.

Recall that we assume w.l.o.g. that the given set of disks D has exactly the critical
covering area π/2. The radius of a single disk that is sufficient to cover the triangle T is
ρ(π/3) = 1/

√
3. If r1 ≥ ρ(π/3), the largest disk suffices to cover the entire triangle. If D = {r1},

r1 = 1/
√

2 > ρ(π/3); this is the induction base of our proof.
If ρ(π/3) > r1 ≥ 1/2, we place r1 covering a trapezoid R(π/3, r1) including a side of T as

depicted in Figure 1(b), leaving an equilateral triangle T1 uncovered. Lemma 7 guarantees
that placing r1 in that way covers more triangle area per disk area than covering T with a
single disk of radius ρ(π/3), which requires π tan(π/6)

sin2(π/3) units of disk area per unit of triangle area.
Thus, because π tan(π/6)

sin2(π/3) < 2π√
3 , Lemma 7 guarantees that the disk area that remains after

placing r1 in this manner is large enough to inductively apply Theorem 2 to the remaining
equilateral triangle. Note that this includes the case D = {r1, r2}, because r1 ≥ 1/2 must
hold in that case.

For r1 < 1
2 , we distinguish the four cases (1) r1 > 3

√
3+

√
10

17 , (2) 3
√

3+
√

10
17 ≥ r1 >

11
16 −

√
249
256 − 11

√
3

24 , (3) 11
16 −

√
249
256 − 11

√
3

24 ≥ r1 > 48−22
√

3
39

√
2 , and (4) 48−22

√
3

39
√

2 ≥ r1. In the
following, we describe how our algorithm handles each case; in Section 4.2, we prove that
this always results in a successful cover.

Case (1) We place the largest disk r1 at distance r1 below a, see Figure 5(b). Let R1 and
R2 be the two congruent smallest rectangles containing the remaining uncovered pockets.
We distinguish the following subcases.

Case (1.1): r2 < 0.11114: We subdivide D into two subsets D1, D2 using Greedy
Splitting and then apply our algorithm for covering rectangles to each Ri with disks
Di, see Figure 5 (b).
Case (1.2): 0.11114 ≤ r2 ≤ 0.47186: We cover R1 by r2 and recurse on R2 with
D \ {r1, r2}.
Case (1.3): r2 > 0.47186: We place the center of r2 at distance r2 to the right of b;
see Figure 5(c). Let T3 be the smallest right-aligned equilateral triangle containing the
uncovered area. We recurse on T3 with disks D \ {r1, r2}.

Case (2) We place r1 at distance r1 below a and apply our rectangle covering algorithm to
the bounding box of the uncovered area with the remaining disks; see Figure 6(a).
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b c
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R

√
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3−1 √

3
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(c)

Figure 6 The covering our algorithm computes for (a) Case (2), (b) Case (3), (c) Case (4).

Case (3) We place r1 at distance r1 below a, covering an equilateral triangle Tb at the top
of T ; see Figure 6(b). Furthermore, we construct two non-overlapping rectangles R1, R2
covering the remaining uncovered isosceles trapezoid. We choose the height y of the lower
rectangle R2 as follows: We iteratively assign the disks from D to R2 until the assigned

weight w2 exceeds the value 11
12

6√
77

(
11
16 −

√
249
256 − 11

√
3

24

)
≈ 0.16588. We then set y = 12w2/11.

The height x of R1 is induced by the height of R2. We assign the remaining unassigned
weight to R1 and apply our rectangle covering algorithm to the rectangles using the assigned
disks.

Case (4) We place r1 covering an isosceles trapezoid with height
√

3r2
1/2 and baseline length√

2r1√
3−1 in the lower left corner of T . We cover the remaining area by another equilateral

triangle Tc and a rectangle R as illustrated in Figure 6(c). We then iteratively assign the
remaining disks in non-increasing order to Tc until the assigned weight wc exceeds 2∥Tc∥/

√
3.

The remaining disks are assigned to R. We then apply our rectangle covering algorithm to
R and recurse on Tc with the assigned disks.

3.3 Covering obtuse isoceles triangles
In this section, we sketch the proof of Theorem 3; details can be found in Section 4.3.

▶ Theorem 3. For α ≥ π/2, the critical covering coefficient for an isosceles triangle with
apex angle α is π tan(α/2).

The worst-case instance consists of a single disk r1 whose diameter is the length of the
hypotenuse τ of our triangle T ; any smaller single disk cannot cover the triangle. The area
of T is ∥T ∥ = τ2

4 tan(α/2) , the area of r1 is πτ2

4 , yielding a lower bound of π tan(α/2) on the
critical covering coefficient.

In the following, we assume that the hypotenuse of T has length
√

2 and is horizontal;
all other cases can be handled by scaling and rotating. We reduce the case of α > π/2 to
the case α = π/2, as depicted in Figure 7(a), by covering the smallest right-angled isosceles
triangle T ′ ⊇ T instead of T , for which we have exactly the same critical covering area. If
the covering computed for T ′ contains disks whose centers are outside of T , these can be
moved to the boundary of T without increasing the distance from the center to any point of
T ; see Figure 7(a).

Therefore, we restrict our attention to right-angled isosceles triangles, which we also call
halfsquares. Thus we can assume without loss of generality that the total weight of our
collection D of disks is 1/2. We present a recursive algorithm that provides an upper bound

CGT
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α 1

√
2

T

T ′
a

a

c

d

e

H
b

(a) (b)

Figure 7 (a) Reducing the case of obtuse isosceles triangles to right-angled ones. If the covering
C of T ′ contains disks centered outside T , we can move them to T by orthogonally projecting them
onto the closer side of T if they are in the area shaded in blue or red, and by moving them to the
apex a if they are in the unshaded region above a. (b) The situation considered in Lemma 8.

on the critical covering coefficient matching the lower bound shown above. A key ingredient
in our proof is the following lemma that shows that the triangle H that remains after placing
a disk as depicted in Figure 7(b) is a halfsquare.

▶ Lemma 8. The triangle H left after placing a disk r such that its boundary contains the
endpoints of a short side of T is a halfsquare.

We distinguish several cases based on the two largest disks r1, r2. For the case D = {r1, r2},
we have a lemma that guarantees that covering is possible; essentially, we prove that placing
r1 as depicted in Figure 7(b) is possible and efficient enough to allow covering the remaining
halfsquare by r2. Together with the case D = {r1}, in which r1 suffices to cover T , this
forms our induction base.

If there are at least three disks, we distinguish five cases based on r1 and r2: (1) 1√
2 >

r1 ≥ 1
2 , (2) 1

2 > r1 ≥ 1
2

√
2 and r1 +r2 < 1√

2 , (3) 1
2 > r1 ≥ 1

2
√

2 and r1 +r2 ≥ 1√
2 , (4) r1 < 1

2
√

2
and r1 + r2 ≥ 5

6
√

2 , and (5) r1 < 1
2

√
2 and r1 + r2 < 5

6
√

2 . In the following, we describe how
our algorithm handles each case; we prove that this always results in a successful covering in
Section 4.3.

Case (1) We place r1 containing the endpoints of a short side of T on its boundary as
depicted in Figure 7(b), which works because r1 ≥ 1

2 . Let H be the uncovered triangle after
placing r1. Lemma 8 implies that H is a halfsquare. We recurse on H with the remaining
weight 1

2 − r2
1.

Case (2) We place r1 holding the apex on its boundary with its center on the angular
bisector of the apex angle, see Figure 8(a). Let D1, D2 be a partition of D resulting from
an application of Greedy Splitting to D. Furthermore, let H1 and H2 be the smallest
halfsquares that cover the uncovered pockets after placing r1 as depicted in Figure 8(a). We
separately recurse on H1 and H2 with D1 and D2.

Case (3) We place the centers m1, m2 of r1, r2 with a distance of
√

r2
1 −

(
r2

1−r2
2+1/2√
2

)2
to

the hypotenuse such that the distances between a and m1 and between m2 and c along ac are
r2

1−r2
2+1/2√
2 and r2

2−r2
1+1/2√
2 , see Figure 8(b). Let R be the rectangle induced by b and the lower

intersection point e between the boundaries of r1 and r2, see the gray area in Figure 8(b).
We apply our rectangle covering algorithm on the rectangle R with the remaining disks.
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Figure 8 (a) Placement of r1 in Case (2). (b) Placement of r1 and r2 in Case (3). (c) Placement
of r1, r2 and the rectangle R in Case (4). (d) Placement of the strip R and the remaining halfsquare
H in Case (5).

Case (4) We place the largest disk r1 holding c on its boundary and with its midpoint on
the hypotenuse ac, see Figure 8(c). Analogously, we place the second largest disk r2 holding
a on its boundary and with its midpoint on the hypotenuse ac. Finally, we recurse on the
smallest rectangle R containing the uncovered area after placing r1, r2 with the remaining
disks.

Case (5) We build a subset of disks Ds ⊂ D and use it to cover a rectangular strip R of
some height s including the bottom side of our triangle, see Figure 8(d). From Lemma 5,
recall σ̂ := 195

√
5257/16384. We start building Ds by adding disks in non-increasing order of

weight, starting with r2, until the collected weight w(Ds) is at least w(Ds) ≥ 195r2
256

√
σ̂

. We set
s = 256w(Ds)

195 and use Lemma 5 to cover the rectangular strip R with the disks from Ds, and
recurse on the remaining half-square H using the remaining disks D \ Ds.

4 Details

In this section, we present the details of the longer proofs that we omitted Section 3 for
better readability.

CGT
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4.1 Details for small apex angle
In this section, we present the remaining details for covering isoceles triangles with small
apex angle; for a high-level overview, refer to Section 3.1.

4.1.1 Details for R1 center

χ

χ

r1

χ

x3

y1

x1

T3

R1

R2

y2

Figure 9 Placement of r1 by routine R1 Center and the three remaining pockets R1, R2 and
T3 and their sizes.

Recall that R1 Center places the disk r1 on the vertical center line of the triangle, such
that the distance χ that the disk protrudes from the triangle is the same on all three sides;
see Figure 9. In that case, we have

χ =
r1 sin

(
α
2
)

+ r1 − cos ( α
2 )

2
sin
(

α
2
)

+ 1
.

If χ ≥ r1, we cannot place r1 as desired and the covering routine fails.
Otherwise, we can guarantee that we can place r1 in the desired way and that the

boundary of r1 has two intersection points with all three sides of T . This leaves uncovered
two pockets at the base, for which we cover their bounding boxes, and a triangle T3. We
compute the intersections points and can thus determine the size of the three remaining
pockets; see Figure 9. Let

c1 :=

√
16r2

1 sin
(

α
2
)

+ 4r2
1 cos (α) tan2 (α

2
)

+ 4r2
1 tan2 (α

2
)

+ 8r2
1 − cos (α) − 1

cos (α) + 1 ,

then we compute the sizes of the remaining pockets as follows:

x1 =
(
1 − sin

(
α
2
)) (

−c1 cos
(

α
2
)

+ sin
(

α
2
)

+ 1
)

2 cos
(

α
2
) ,

x3 =
(
1 − sin

(
α
2
)) (

c1 cos
(

α
2
)

+ sin
(

α
2
)

+ 1
)

2 cos
(

α
2
) ,

y1 =
1 −

√
8r2

1 sin
(

α
2
)

− 4r2
1 cos2

(
α
2
)

+ 8r2
1 − cos2

(
α
2
)

+ sin
(

α
2
)

2
(
sin
(

α
2
)

+ 1
) , and
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y2 = x1 · tan(α/2).

We then check whether r2 and r3 can cover R1, R2 or T3 on their own. We try covering
each possible combination of {R1, R2, T3} using r2, r3. Between 1 and 3 pockets remain
uncovered.

If one pocket remains uncovered, we check whether the remaining disk weight suffices to
cover it by recursion (i.e., inductive application of Theorem 1 for T3), or by our rectangle
covering algorithm. This can be done in the success criterion as well because it only depends
on α and r1, r2, r3.

If two or three pockets remain uncovered, we have to partition the remaining disks before
we can apply rectangle covering or recursion. We do this by iteratively collecting disks until
their total weight is sufficient; in our success criterion, we bound the total weight assigned to
a pocket P by w(P ) + r2

max, where w(P ) is the weight required for recursion or rectangle
covering and rmax is the size of the largest disk (r2 or r3) that may be assigned to P . This
allows us to decide whether any of our rectangle covering results or an inductive application
of Theorem 1 guarantees success.

4.1.2 Details for two large disks

(0, 0)
(r2, 0)

(x1, y1)

p3

c

T3
(x2, y2)

L

m1

p4

Figure 10 Our covering routine for the case of two large disks r1, r2 ≤ 1/2.

Our routine Two Large Disks works as depicted in Figure 10. The origin of our
coordinate system is placed at the apex of the input triangle T . The smaller disk r2 is placed
at distance r2 to its right. We draw a line segment L through the upper intersection point of
r2 and the upper side of T and the bottom right corner of T . We place the center m1 of r1
such that it covers the line segment L, touching the end points of L with its boundary. If
the lower intersection p3 between r2 and the bottom side of T is not inside r1, Two Large
Disks fails. Otherwise, the remaining region is covered by a triangle T3, on which we recurse.

Let

t1 =

√√√√16r2
1 tan2 (α

2
)

− (2r2 sin (α) + 1)2 tan2 (α
2
)

−
(
2r2 (cos (α) + 1) tan

(
α
2
)

− 1
)2

(2r2 sin (α) + 1)2 tan2 (α
2
)

+
(
2r2 (cos (α) + 1) tan

(
α
2
)

− 1
)2 ,

then the resulting coordinates for the center m1 of r1 are

mx =
(2r2 (cos (α) + 1) + t1 (2r2 sin (α) + 1)) tan

(
α
2
)

+ 1
4 tan

(
α
2
) , and

my =
t1
(
−2r2 (cos (α) + 1) tan

(
α
2
)

+ 1
)

+ (2r2 sin (α) − 1) tan
(

α
2
)

4 tan
(

α
2
) .
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Furthermore, the coordinates (vx, vy) of the right intersection point p4 of r1 with the top
side of T are

vx =

√
8r2

1 cos (α)−8r2
1−2r2

2 cos (2α)+2r2
2−2r2 sin (2α)+1

2r2
2 cos (2α)−2r2

2+2r2 sin (2α)−1 sin (α) + cos (α)

2 tan
(

α
2
) , and

vy = vx tan(α/2).

These formulas allow us to compute the size of the triangle covering the remaining region
T3; if the remaining disks suffice to cover T3 by an inductive application of Theorem 1, our
success criterion is satisfied and our algorithm is guaranteed to produce a valid covering.

Note that, for α = π/4, the case of two disks of radius r1 = r2 = 1/2 is actually a second
worst-case instance with exactly the same total disk area as a single disk covering T . Here,
Two Large Disks produces a covering that places r1 on the center of the base of T .
Unfortunately for our interval arithmetic approach, this means that our result is tight (in the
numerical sense) for α, r1, r2 very close to these values. Therefore, the discretization error
introduced by using intervals of any positive size implies that our automatic approach does
not work for values very close to this two-disk worst case. We introduce the following lemma
to address this issue, allowing our computer-assisted approach to avoid the area close to this
two-disk worst-case.

▶ Lemma 9. For any α ∈ [44◦, 45◦] and any r2, r1 ∈ [0.48, 0.5]2 with r2 ≤ r1, Two Large
Disks produces a valid covering of the input triangle T .

Proof. Let α, r1, r2 be in the specified ranges. For values in this range, placing r1 and r2 as
depicted in Figure 10 is always possible. Furthermore, p3 is always covered by r1, and the
remaining triangle is always induced by the point p4, instead of the intersection of r1 with
the base.

Let w12 = tan(α/2)
sin2(α) − r2

1 − r2
2 be the weight of the disks that remains after placing r1, r2.

By wr, we denote the weight required by Theorem 1 to guarantee a successful covering of T3.
We have

wr =

(√
8r2

1 cos (α)−8r2
1−2r2

2 cos (2α)+2r2
2−2r2 sin (2α)+1

2r2
2 cos (2α)−2r2

2+2r2 sin (2α)−1 − tan
(

α
2
))2

4 .

By ∆ = w12 − wr, we denote the amount of disk weight by which we exceed the amount
required for recursion, and show that ∆ ≥ 0 for all points we have to consider.

We compute the partial derivative of ∆ by r1 and prove by interval arithmetic that it
is negative for all points in our ranges. Therefore, independent of r2 and α, we can always
reduce ∆ by increasing r1 to its maximum 1/2. Similarly, we then compute the partial
derivative of ∆ by r2 for r1 = 1/2; again, we can prove it is negative for all points independent
of α. Finally, the partial derivative for α is also negative for r2 = r1 = 1/2; thus, ∆ takes on
its global minimum at α = π/4, r1 = r2 = 1/2, where we have ∆ = 0. Therefore, the amount
of weight by which we exceed the required weight is never negative, implying a successful
cover for every point we have to consider. ◀

4.2 Details for equilateral triangles
In this section, we present the details for covering equilateral triangles; for a high-level
overview, refer to Section 3.2.
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Figure 11 Left: Case (1.1), Middle: Case (1.3), Right: Case (2).

4.2.1 Details for Case (1)
To handle Case (1) (see Figure 11), we show the following lemma.

▶ Lemma 10. The covering routine we use in Case (1) achieves a covering of the entire
input triangle T .

Proof. We observe that the area not covered by the largest disk is made up of two disjoint
pockets because the diameter of the largest disk is 2r1 > 0.98334 ≈ 2 ·

(
3

√
3+

√
10

17

)
>

√
3

2 ≈
0.86602. We show the lemma for Cases (1.1), (1.2), and (1.3) separately.

r2 < 1
2
√

0.12862 + 0.18132 < 0.11114: The height of R1 is
√

3
2
(
1 −

√
3r1
)

≤ 0.1286,
see Figure 11 left. Furthermore, the width of R1 is 1

2 −
√√

3r1 − 3
4 ≤ 0.1813. Thus,

|R1| ≤ 0.02331 and the skew of R1 is at most 1.5622. Analogously, we get |R2| ≤ 0.02331
and that the skew of R2 is at most 1.5622. This yields that the weights assigned to
R1, R2 are at least as large as 11

12 |R1|, 11
12 |R2|. In particular, we have:

1
2 − r2

1
2 − r2

2
2 >

1
2 − 1

4
2 − 0.11112

2 ≥ 0.06945 > 0.02137 ≈ 11
120.02331

because r1 ≤ 1
2 and r2 < 0.1111. Finally, Theorem 4 implies that the weights assigned

to R1, R2 permit coverings of R1, R2.
0.11114 ≤ r2 ≤ 0.47186: We have

1
2 −

√
√

3r1 − 3
4 ≤ 3

√
3

2

(
1 −

√
3r1

)
(2)

because the left side of Inequality 2 is monotonically decreasing and thus attains its
maximum ≈ 0.181257 for r1 = 0.49167 ≈ 3

√
3+

√
10

17 . Furthermore, the right side is
monotonically decreasing and thus attains its minimum ≈ 0.3481 at r1 = 1

2 . This implies

1
3 ≤

√
3

2
(
1 −

√
3r1
)

1
2 −

√√
3r1 − 3

4

. (3)

Furthermore, we have
√

3
2

(
1 −

√
3r1

)
≤ 3

2 − 3
√

√
3r1 − 3

4 (4)

because the left side of Inequality 4 attains its maximum ≈ 0.12852 at r1 = 0.49167 ≈
3

√
3+

√
10

17 and the right side attains its minimum ≈ 0.478124 at r1 = 1
2 . This implies

√
3

2
(
1 −

√
3r1
)

1
2 −

√√
3r1 − 3

4

≤ 3. (5)
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Combining Inequalities 3 and 5 yields that R1 has a skew λ of at most 3. We have
r2

2 ≤ 0.22865 because r2 ≤ 0.47186. Thus, we upper bound r2
2 as follows:

r2
2 ≤ 0.22865

≤ 1
4 − 11

√
3

24 · 0.14841 · 0.18126

≤ 1
2 − r2

1︸ ︷︷ ︸
≥ 1

4
as r≤ 1

2

−11
√

3
24

(
1 −

√
3r1

)
︸ ︷︷ ︸

≤0.14841
as r1≤0.49168

(
1
2 −

√
√

3r1 − 3
4

)
︸ ︷︷ ︸

≤0.18126
as r1≤0.49168

(6)

(7)

Inequality 6 is equivalent to

1
2 − r2

1 − r2
2 ≥ 11

12 ·
√

3
2

(
1 −

√
3r1

)(1
2 −

√
√

3r1 − 3
4

)

≥ λ2 + 2
2 ·

√
3

2

(
1 −

√
3r1

)(1
2 −

√
√

3r1 − 3
4

)
.

Thus, Theorem 4 implies that the weight assigned to R2 permits a covering of R2 because
the skew λ of R1 is at most 3.
r2 > 0.47186: Let ε such that r2 = 1

2 − ε, e the second intersection of the boundary of r2
with the base line bc, and d the intersection of the boundary of r2 with the ac which lies
closer to c, see Figure 11 right. We have |ec| = |bc| − |be| = 1 − 2r2 = 2ε.
Let o ∈ bc be the midpoint of r2. Using the cosine rule, we obtain cos (∠(d, c, o)) =
cos
(

π
3
)

= 1
2 = |dc|2+(1−r2)2−r2

2
2x(1−r2) . Thus we obtain

|dc|2 + |dc|(r2 − 1) + 1 − 2r2 = 0

⇒ |dc| = 1
4 + ε

2 − 1
4
√

1 − 4 (7ε − ε2)

⇒ |dc| <
1
2
(
15ε − 2ε2)

<
15ε

2 ,

because 1 − δ ≤
√

1 − δ for δ ∈ [0, 1].
We have r2 > 0.47186 > 1

2 − 8
233 which implies ε ≤ 8

233 . Thus, we obtain

8
233 ≥ ε

⇔ 1 ≥ 233
8 ε

⇔ ε ≥ 233
8 ε2

⇔ 1
2 − 1

4 − 1
4 − ε2 + ε ≥ 225

8 ε2

⇒ 1
2 − r2

1 − r2
2 ≥ 2√

3
·

√
3

4

(
15
2 ε

)2
.

This means that the remaining weight 1
2 − r2

1 − r2
2 is at least 2√

3 times the area of an
right-aligned equilateral triangle with side length 15ε

2 . As the side length |dc| of T is
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smaller than 15ε
2 , we obtain that the remaining weight permits a covering of T . This

concludes the proof. ◀

4.2.2 Details for Case (2)

In Case (2), we have to prove that we can cover the remaining rectangle R using our rectangle
covering algorithm, see Figure 11 right.

▶ Lemma 11. In Case (2), the remaining weight w(D \ {r1}) permits a covering of R.

Proof. Note that in this case we already have 3
√

3+
√

10
17 ≥ r1 > 11

16 −
√

249
256 − 11

√
3

24 . Further-
more, for the entire analysis of Case (2) we distinguish between two (sub) cases regarding
r1:

11
16 −

√
249
256 − 11

√
3

24 ≤ r1 ≤ 1√
3 − 2

9 : From r1 ≤ 1√
3 − 2

9 we obtain r1 ≤ 2
3

(√
3

2 − 1
3

)
which

is equivalent to 1 ≤ 3
√

3−3r1
2 . This implies that R has a skew λ of at most 3 because R

has a width of 1 and a height of
√

3−3r1
2 .

Next, we lower bound the remaining weight 1
2 −r2

1 by 11
12

√
3−3r1

2 . Based on that, Theorem 4
implies that the remaining weight permits a covering of R because λ :=

√
3−3r1

2 ≤ 3
implies 11λ

12 ≥ λ2+2
4 .

From r1 ≤ 1√
3 − 2

9 ≈ 0.35512 we obtain r1 ≤ 11
16 +

√
249
256 − 11

√
3

24 ≈ 1.1103. Thus, we have

11
16 −

√
249
256 − 11

√
3

24 ≤ r1 ≤ 11
16 +

√
249
256 − 11

√
3

24

⇔ 0 ≥ r2
1 − 11r1

8 + 11
√

3
24 − 1

2 ⇔ 1
2 − r2

1 ≥ 11
12

(√
3 − 3r1

2

)
.

1√
3 − 2

9 < r1 ≤ 3
√

3+
√

10
17 : From 0.35512 ≈ 1√

3 − 2
9 < r1, we obtain 0.11964 ≈ 3

√
3−

√
10

17 ≤ r1.
Thus we have

3
√

3 −
√

10
17 ≤ r1 ≤ 3

√
3 +

√
10

17

⇔ 17r2
1

8 − 3
√

3r1

4 + 1
8 ≤ 0 ⇔ 1

2 − r2
1 ≥

1 + 2
(√

3−3r1
2

)2

4 .

Hence, the remaining weight 1
2 − r2

1 is at least 1+2x2

4 · 1
x2 with x :=

√
3−3r1

2 , which is
exactly the weight required by Theorem 4 for an x × 1-rectangle with x ≤ 1/λ2. Thus,
Theorem 4 implies that R can be covered by the remaining weight. This concludes the
proof. ◀

4.2.3 Details for Case (3)

In Case (3), we have to show that the disks assigned to the two remaining rectangles are
sufficient to cover them; see Figure 6(b).

▶ Lemma 12. The disks assigned to R1 and R2 permit coverings of R1 and R2.

CGT
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Proof. By construction, the weight assigned to R2 is equal to 11
12 |R2| and the radius of the

largest disk assigned to R2 is at most 0.2646 <
√

77
6 =

√
σ
( 11

12
)
. Therefore, Lemma 5 implies

that the weight assigned to R2 permits a covering of R2.
The height y of the lower rectangle R2 is given as follows:

y = 6√
77

11
16 −

√
249
256 − 11

√
3

24

− 12δ

11 . (8)

for δ ∈ [0, r2
1]. Furthermore, the height x of the upper rectangle R1 is given as x =

√
3

2 −y− 3r1
2 .

Applying Equality 8 yields:

x =
√

3
2 − 3r1

2 − 6√
77

11
16 −

√
249
256 − 11

√
3

24

+ 12δ

11 .

The width of R1 is w = 1 − 2y√
3 . Consider the skew λ := max{ x

w , w
x } of R1. Thus, we have

everything at hand to check prove via interval arithmetic that the remaining weight is large
enough to cover R1. In particular, we prove that

1
2 − r2

1 − 11
12

6√
77

11
16 −

√
249
256 − 11

√
3

24

− δ

︸ ︷︷ ︸
Weight used to cover R2

suffices to cover R1 by Theorem 4 for all δ ∈ [0, r2
1] and r1 ∈

[
48−22

√
3

39
√

2 , 11
16 −

√
249
256 − 11

√
3

24

]
.

Thus, Theorem 4 implies that the remaining weight permits a covering of R1. ◀

4.2.4 Details for Case (4)
In Case (4), we have to show that the disks assigned to the remaining triangle Tc and
rectangle R; see Figure 6(c).

▶ Lemma 13. The disks assigned to Tc, R permit coverings of Tc, R.

Proof. Our algorithm itself guarantees that the weight assigned to Tc is at least 2π√
3 times

the area of Tc. Thus, Theorem 2 implies that the weight assigned to Tc permits covering
Tc. Thus it still remains to be proven that the weight assigned to the rectangle R permits
covering R.

The weight assigned to Tc is at most 2√
3

√
3

4 (
√

2r1)2 + r2
1. Thus, the weight assigned to R

is at least 2√
3

√
3

4 − r2
1 −

(
2√
3

√
3

4 (
√

2r1)2 + r2
1

)
= 1

2 − 3r2
1.

The area of R is
√

3
2 r1

(
1 −

√
2r1√
3−1 + r1√

2

)
.

In order to show that the weight assigned to R is enough to cover R, we consider the
inequality

1
2 ≥ 11

12

((
36
11 −

√
3√

3 − 1
+

√
3

2

)
r2

1 +
√

3
2r1

)
. (9)

We have 36
11 −

√
3√

3−1 +
√

3
2 ≥ 0 implying that the right-hand side of Inequation 9 is monotonically

increasing in r1. Hence, we assume r1 = 48−22
√

3
39

√
2 for which Inequality 9 is true.
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We apply the following equivalent transformations:

1
2 ≥ 11

12

((
36
11 −

√
3√

3 − 1
+

√
3

2

)
r2

1 +
√

3
2r1

)
(10)

⇔ 1
2 − 3r2

1 ≥ 11
12

((
−

√
3√

3 − 1
+

√
3

2

)
r2

1 +
√

3
2r1

)
(11)

⇔ 1
2 − 3r2

1 ≥ 11
12

(√
3
2r1

(
1 −

√
2r1√

3 − 1
+ r1√

2

))
(12)

Inequality 12 implies that the weight assigned to R is at least 11
12 times the area of R.

Finally, Lemma 5 implies that the weight assigned to R permits a covering of R because√
3
2 ≈ 1.2247 . . . <

√
σ
( 11

12
)

=
√

77
6 ≈ 1.4625 . . .. ◀

4.3 Details for halfsquares
In this section, we present the details for covering halfsquares, i.e., right-angled isoceles
triangles. For a high-level overview, refer to Section 3.3.

4.3.1 Proof of Lemma 8
In this section, we present the proof of Lemma 8.

▶ Lemma 8. The triangle H left after placing a disk r such that its boundary contains the
endpoints of a short side of T is a halfsquare.

a

bc

d

o

e

ov

oh

α

α

H

Figure 12 The triangle H left after placing a disk r ≥ |bc|
2 holding b, c on its boundary is a

halfsquare.

Proof. Let ov and oh be the orthogonal projections of o onto bd and bd; see Figure 12.
As c and b lie on the boundary of r1 we obtain |cov| = |bov| = 1

2 . Furthermore, we
have |co| = |do| = r1 and ∠(c, ov, o) = ∠(o, oh, d) = π

2 . Thus, the triangles △(c, ov, o) and
△(o, oh, d) are congruent which implies ∠(o, c, ov) = ∠(d, o, oh). As coh and ooh lie in parallel,
we obtain that o lies on cd. This means that cd is the diameter of r1. By Thales’ Theorem
we obtain ∠(c, e, d) = π

2 . Thus, ∠(a, e, d) = π
2 . This implies ∠(e, d, a) = π − π

2 = π
4 = π

4 ,
which means that H is a halfsquare. ◀

CGT
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4.3.2 Details for two disks
Recall that we need to handle the case D = {r1, r2} in our induction base; to this end, we
prove the following lemma.

▶ Lemma 14. Any pair of disks with radii r1 ≥ r2 and total weight r2
1 + r2

2 at least 1/2

permits a covering of a halfsquare H with hypotenuse
√

2.

Proof. If r1 ≥ 1√
2 , T is covered by placing the midpoint of r1 on the midpoint of the

hypotenuse. Thus, we assume r1 < 1√
2 . From r2

1 + r2
1 ≥ 1

2 , we get r1 ≥ 1
2 because r1 ≥ r2.

This allows that b and c lie on the boundary of r1.
Lemma 8 implies that the triangle T induced by the uncovered area after placing r1 is

a halfsquare. Let d be the intersection point of ab with the boundary of r1, see Figure 12.
Thus, |ad| = 1

2 −
√

r2
1 − 1

4 . In order to show that T can be covered by r2, we consider the

inequality
√

1
2 − r2

1 ≥ 1
2 −

√
r2

1 − 1
4 which is true for r1 ∈

[
1
2 , 1√

2

]
. Furthermore, r2

1 + r2
2 ≥ 1

2

implies r2 ≥
√

1
2 − r2

1. This yields, r2 ≥ 1
2 −

√
r2

1 − 1
4 , i.e., 2r2 is at least as large as the

length of the hypotenuse of H implying that H can be covered by r2. ◀

4.3.3 Details for Case (1)
We use the following lemma to handle Case (1); see Figure 7(b).

▶ Lemma 15. The remaining weight 1
2 −r2

1 permits a covering of the uncovered halfsquare H.

Proof. By assumption, we have r1 < 1√
2 which implies

√
r2

1 − 1
4 ≤ 1

2 . We apply the following
equivalent transformations:√

r2
1 − 1

4 ≤ 1
2

⇔ r2
1 − 1

4 ≤ 1
2

√
r2

1 − 1
4

⇔

(√
r2

1 − 1
4 − 1

2

)2

≤ 1
2 − r2

1.

This means that the remaining weight is at least as large as the area of H. Lemma 8 implies
that H is a halfsquare. This concludes the proof. ◀

4.3.4 Details for Case (2)
We use the following lemma to handle Case (2); see Figure 8(a).

▶ Lemma 16. The weights of D1, D2 permit coverings of H1, H2.

Proof. Consider the function f(r1) := 4r2
1 − 3

√
2r1 + 1. The first derivative of f is 8r1 − 3

√
2

and the second derivative of f is positive. Furthermore, we have f
(

1√
2

)
= 2 − 3 + 1 = 0

and f
(

1
2

√
2

)
= 1

2 − 3
2 + 1 = 0. Thus, we have

0 ≥ 4r2
1 − 3

√
2r1 + 1

⇔ 1
2

(√
2r1 − 2r2

1

)
≥ 1

2

(
1 −

√
2r1

)2

(⋆)⇒ 1
4 − r2

1 + r2
2

2 ≥ 1
2

(
1 −

√
2r1

)2
.
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Implication (⋆) applies r2 ≤ 1√
2 − r1 which is guaranteed by greedy splitting. This means

that weight of D1 is at least as large as the area of H1.
Analogously, we obtain that the weight of D2 is at least as large as the area of H2. This

concludes the proof. ◀

4.3.5 Details for Case (3)

We use the following lemma to handle Case (3); see Figure 8(b). For Case (3), we prove that

a

bc

e

d

f

g

m1

m2

r
2

1
−r

2
2
+

1
2

√ 2

r
2

2
−r

2
1
+

1
2

√ 2

√
r 2
1 − (

r 2
1 −

r 2
2 +

1
2

√
2 )

2

R

r1 r2

bc

e

d

g

r1

bc

e

d

f

r2

h1

h2

a

Figure 13 Top: Recursion Case 3. Bottom left: e, g have the same x-coordinates because e, g, h1

are the corners of a halfsquare. Bottom right: e, f have the same y-coordinates because e, f, h2 are
the corners of a halfsquare.

the disks placed as depicted in Figure 13 top and the rectangle R cover the entire halfsquare,
and that the remaining disks are sufficient to cover R using our rectangle covering algorithm.

▶ Lemma 17. The union of r1, r2, R covers the entire halfsquare.

Proof. In order to prove the lemma, we show four statements: (P1) e has the same x-
coordinate as the intersection point g between bc and the boundary of r1. (P2) e has the
same y-coordinate as the intersection point f between ba and the boundary of r2. (P3) The

CGT
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boundaries of r1, r2 intersect on ac. (P4) c, a lie on the boundaries of r1, r2 implying that
the entire hypotenuse is covered by r1 and r2.

The combination of the four properties (P1)-(P4) will imply that r1, r2, R cover the entire
halfsquare.

(P1) The segment de lies orthogonal to ac because m1 and m2 have the same distance to
ac, see Figure 13 top. Let h1 be the intersection point of the lines induced by bc and de, see
Figure 13 bottom left. Thus, the triangle induced by c, d, h1 is a halfsquare at which r1 holds
c, d on its boundary. Lemma 8 implies that the triangle induced by e, g, h1 is a halfsquare.
Hence, e, g have the same x-coordinate.

(P2) A symmetric approach implies that e, f have the same y-coordinate, see Figure 13
right.

(P3) The distance between c and the intersection point d1 between ac and the boundary
of r1 is 2 · r2

1−r2
2+1/2√
2 . Analogously, the distance between a and the intersection point d2

between ac and the boundary of r2 is 2 · r2
2−r2

1+1/2√
2 . Thus, we obtain |cd1| + |ad2| =

√
2

implying d1 = d2, i.e., the boundaries of r1 and r2 intersect on ac.
(P4) The Pythagorean Theorem implies

|cm1| =

√(
r2

1 − r2
2 + 1

2√
2

)2

+ r2
1 −

(
r2

1 − r2
2 + 1

2√
2

)2

= r1.

This means that c lies on the boundary of r1.
A similar approach implies that a lies on the boundary of r2. This concludes the proof. ◀

Let λ be the skew of R. Assume that the two largest disks have radii r1 = 1
2 − ε1 and

r2 = 1
2 −ε2 with ε1 ≥ 3

116 or ε2 ≥ 3
116 . Using this assumption, we apply an interval arithmetic

based program to establish that the remaining weight 1
2 − r2

1 − r2
2 is at least 195λ

256 if λ ≤ λ

and at least λ2+2
4 if λ ≥ λ. Hence, Theorem 4 implies that the remaining weight permits a

covering of R if ε1 ≥ 3
116 or ε2 ≥ 3

116 .
If ε1, ε2 ≤ 3

116 , i.e., r1, r2 are approaching 1
2 , interval arithmetic fails because D is

approaching the worst case instance made up of two disks r1 = r2 = 1
2 . Thus for the case

0 ≤ ε2 ≤ ε1 ≤ 3
116 , we give an analytic proof. In order to do this, we give upper bounds

8ε2, 5ε2 for the dimensions of R, see Lemmas 18 and 192. Finally, we show by Lemma 20
that the remaining weight permits a covering of an rectangle with dimensions 8ε2, 5ε2. This
will imply that the remaining weight permits a covering of R.

▶ Lemma 18. If 0 ≤ ε2 ≤ ε1 ≤ 3
116 , the width |bg| of R is upper-bounded by 8ε2.

Proof. By construction of the midpoint m1 of r1, we have cos (∠(d, c, m1)) = r2
1−r2

2+1/2√
2r1

, see
Figures 13 and 14.

The cosine addition theorem implies

cos (∠(m1, c, g)) + sin (∠(m1, c, g)) =
r2

1 − r2
2 + 1

2
r1

.

2 Our upper bound 5ε2 on the height of R is smaller than our upper bound 8ε2 on the width of R. Note,
that this is a result of the approaches of Lemmas 18 and 19 while the rectangle R has larger height
than width.
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a

bc

e

d

f

g

m1

m2

R
θ

r1

cos(θ)r1

r2

η cos(η
)r

2

A

Figure 14 In Case (3), the width and height of the remaining rectangle R are equal to 1−cos(θ)r1

and 1 − cos(η)r2.

because ∠(d, c, m1) = π
4 − ∠(m1, c, g). For simplification, we set θ := ∠(m1, c, g) and

c1 := r2
1−r2

2+ 1
2

r1
. This yields

sin (θ) = c1 − cos (θ)

⇔
√

1 − cos2 (θ) = c1 − cos (θ)

⇒ 1 − cos2 (θ) = (c1 − cos (θ))2

⇔ 1 − cos2 (θ) = c2
1 − 2c1 cos (θ) + cos2 (θ)

⇔ cos2 (θ) = −1
2c2

1 + c1 cos (θ) + 1
2

⇔ cos2 (θ) − c1 cos (θ) + 1
4c2

1 = −1
4c2

1 + 1
2

⇔
(

cos(θ) − 1
2c1

)2
=
(
2 − c2

1
)

4

⇒ cos(θ) − 1
2c1 =

√
2 − c2

1
2

⇔ cos(θ) = c1 +
√

2 − c2
1

2 .

As cos(θ) + sin(θ) = c1 with θ ∈ [0, π], we have c1 ∈ [1,
√

2]. The first derivative of
c1+

√
2−c2

1
2 is 1

2

(
1 − c1√

2−c2
1

)
which is negative for c1 ∈ [0, π]. This implies that c1+

√
2−c2

1
2 is

CGT
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monotonically decreasing in c1. We have

c1 =
r2

1 − r2
2 + 1

2
r1

≤
( 1

2
)2 −

( 1
2 − ε2

)2 + 1
2

1
2 − ε1

ε2≤ 3
116

≤ (1 + 3ε1)
(

1
2 + ε2 − ε2

2

)
≤ (1 + 3ε1)

(
1
2 + ε2

)
= 1 + 2ε2 + 3ε1 (1 + 2ε2)
= 1 + 6ε2︸︷︷︸

=:f1

.

By applying that
√

1 + δ ≥ 1 + δ holds for δ ∈ [−1, 0] (⋆) and that f2
1 ≤ f1 holds because

f1 ≤ 1 (†), we lower bound cos(θ) as follows:

cos(θ) = c1 +
√

2 − c2
1

2
(⋆)
≥ 1 + f1 +

√
1 − f2

1 − 2f1

2
(†)
≥ 1 + f1 + −f2

1 − 2f1

2
≥ 1 − f1.

Thus, |bg| = 1−2 cos(θ)r1 ≤ 1−2(1−f1)( 1
2 −ε1) ≤ 2ε1 +f1 = 8ε2, concluding the proof. ◀

The proof of Lemma 19 is symmetric to the proof of Lemma 18.

▶ Lemma 19. If 0 ≤ ε2 ≤ ε1 ≤ 3
116 , the height |bf | of R is upper-bounded by 5ε2.

Proof. By construction of the midpoint m2 of r2, we have cos (∠(d, a, m2)) = r2
2−r2

1+1/2√
2r2

, see
Figures 13 and 14. The cosine addition theorem implies

cos (∠(m2, a, f)) + sin (∠(m2, a, f)) =
r2

2 − r2
1 + 1

2
r2

.

because ∠(d, a, m2) = π
4 − ∠(m2, a, f). For simplification, we set η := ∠(m2, a, f) and
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c2 := r2
2−r2

1+ 1
2

r2
. This yields

sin (η) = c2 − cos (η)

⇔
√

1 − cos2 (η) = c2 − cos (η)

⇒ 1 − cos2 (η) = (c2 − cos (η))2

⇔ 1 − cos2 (η) = c2
2 − 2c2 cos (η) + cos2 (η)

⇔ cos2 (η) = −1
2c2

2 + c2 cos (η) + 1
2

⇔ cos2 (η) − c2 cos (η) + 1
4c2

2 = −1
4c2

2 + 1
2

⇔
(

cos(η) − 1
2c2

)2
=
(
2 − c2

2
)

4

⇔ cos(η) − 1
2c2 =

√
2 − c2

2
2

⇔ cos(η) = c2 +
√

2 − c2
2

2 .

As cos(η) + sin(η) = c2 with η ∈ [0, π], we have c2 ∈ [1,
√

2]. The first derivative of
c2+

√
2−c2

2
2 is 1

2

(
1 − c2√

2−c2
2

)
which is negative for c2 ∈ [0, π]. This implies that c2+

√
2−c2

1
2 is

monotonically decreasing in c2. We have

c2 =
r2

2 − r2
1 + 1

2
r2

≤
r2

1 − r2
1 + 1

2
r2

≤ 1
2r2

≤ 1 + 3ε2︸︷︷︸=: f2.

By applying that
√

1 + δ ≥ 1 + δ holds for δ ∈ [−1, 0] (⋆) and that f2
2 ≤ f2 holds because

f2 ≤ 1 (†), we lower bound cos(η) as follows:

cos(θ) = c2 +
√

2 − c2
2

2
(⋆)
≥ 1 + f2 +

√
1 − f2

2 − 2f2

2
(†)
≥ 1 + f2 + −f2

2 − 2f2

2
≥ 1 − f2.

Thus, |bg| = 1 − 2 cos(η)r2 ≤ 1 − 2(1 − f2)( 1
2 − ε2) ≤ 2ε2 + f2 ≤ 5ε2 as required. ◀

▶ Lemma 20. If 0 ≤ ε2 ≤ ε1 ≤ 3
116 , the remaining weight 1

2 − ( 1
2 − ε1)2 − ( 1

2 − ε2)2 permits
a covering of an 8ε2 × 5ε2 rectangle A.

Proof. The remaining weight is 1
2 − 1

4 +ε1 −ε2
1 − 1

4 +ε2 −ε2
2 > ε2 −2ε2

2 ≥ 110
116 ε2 ≥ 975

32 · 3
116 ε2 ≥

195
256 · 8ε2 · 5ε2. Thus, Theorem 4 implies that the remaining weight permits a covering of A
which in turn covers R. ◀
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4.3.6 Details for Case (4)
In Case (4), we prove that the disks that remain after placing r1, r2 as depicted in Figure 8(c)
suffice to cover R.

▶ Lemma 21. The remaining weight 1
2 − r2

1 − r2
2 permits a covering of R.

Proof. Consider the inequality

− (r1 + r2)2 − 5
12 + 11

√
2

12 (r1 + r2) ≥ −r1r2

6 (13)

restricted to r1 + r2 ∈
[

5
6

√
2 , 1√

2

]
. The term on the left hand side achieves its minimum 0 at

r1 + r2 = 1√
2 and r1 + r2 = 5

6
√

2 . Hence, the left hand side is non-negative while the right
hand side is non-positive ensuring that Inequality 13 is satisfied.

Lemma 8 implies that the triangles covered by r1, r2 are halfsquares. Thus, the lengths
of the sides of R lie between 1 and 1

2 because 1 −
√

2r1 ≥ 1 −
√

2 1
2

√
2 as r1 ≤ 1

2
√

2 . Thus, R
has a skew λ := 1−

√
2r2

1−
√

2r1
no larger than 2.

Inequality 13 is equivalent to

1
2 − r2

1 − r2
2 ≥ 11

12

(
1 −

√
2r1

)(
1 −

√
2r2

)
which implies that the remaining weight is at least 11

12 |R| ≥ 195
256 |R|. Hence, Theorem 4

implies that the remaining weight permits a covering of R. ◀

4.3.7 Details for Case (5)
Recall that, in Case (5) (see Figure 8(d)), we have r1 < 1/2

√
2 and r1 + r2 < 5/6

√
2. Thus,

r1 ≥ r2 implies r2 ≤ 5/12
√

2. Furthermore, recall that we build a set Ds of disks of non-
increasing weight, starting with r2. By construction, this set has total weight w(Ds) at least
w(Ds) ≥ 195r2

256
√

σ̂
. Because the largest disk in Ds has weight r2

2, the total weight of Ds is at most
w(Ds) ≤ 195r2

256
√

σ̂
+r2

2 < 1/2− 1
(2

√
2)2 < 1/2−r2

1. This implies that we always have enough weight
in disks r2, r3, . . . to ensure that we will eventually exceed the required weight. Furthermore,
recall that we use Ds to cover a rectangular strip R of width 1 and height s = 256w(Ds)/195.
Using the bounds on Ds, we can bound this height by r2√

σ̂
≤ s < r2√

σ̂
+ 256r2

2
195 < 1.

We begin by showing that this covering is actually guaranteed to succeed using Lemma 5.
We note that for σ = σ̂ = 195

√
5257/16384, the covering density E(σ) guaranteed by Lemma 5

is 195/256 disk weight per unit of rectangle area. By construction, the area of R is s =
256w(Ds)/195 = w(Ds)/E(σ̂). Therefore, a successful covering is guaranteed by Lemma 5 if the
largest disk r2 in Ds satisfies the size bound condition of the lemma for σ = σ̂. Note that the
situation in the lemma is normalized such that the shorter side of the rectangle has length 1.
To check the size bound condition of the Lemma 5, we thus scale the rectangle and the disks
by a factor of 1/s. We hence need to verify that σ̂ ≥ r2

2
s2 , which follows from the lower bound

on s and thus from the construction of Ds. Thus, we now know that covering R is possible
with Ds.

It only remains to prove that the remaining disks, which include r1, always suffice to
cover the remaining halfsquare H recursively. For this, we consider the area ∆s = s − s2

/2 of
the original halfsquare that we cover using Ds, i.e., the area s of R minus the part of R that
is not in our original halfsquare. We are given a total disk weight of 1/2 to cover a halfsquare
of area 1/2; thus, on average, we have to cover one unit of halfsquare area for each unit of
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disk weight. In order to prove that the remaining disks suffice to cover H, we thus prove
that the halfsquare area ∆s covered by Ds satisfies E∆ := w(Ds)/∆s ≤ 1, i.e., that we cover
at least one unit of halfsquare area for each unit of weight in Ds. We have

E∆ =
195s
256

s(1 − s
2 ) = 195

128(2 − s) ≤ 1 ⇔ s ≤ 61
128 .

Using our upper bound on s and solving the resulting quadratic inequality for r2 > 0, we get

r2√
σ̂

+ 256r2
2

195 ≤ 61
128 ⇔ r2 ≤ 1

128

√
(195(320677 + 2048

√
5257))

10514 −
√

195
4 4

√
5257

≈ 0.318775,

which follows from the fact that we have r2 ≤ 5/12
√

2 ≈ 0.29463.
Therefore, partially covering the halfsquare with Ds is actually more efficient than

necessary; therefore, after using the disks in Ds, enough weight remains to cover H recursively.

4.4 Interval arithmetic: implementation details
Implementing interval arithmetic operations is a task that involves several challenges. For
floating-point numbers with hardware support, such as the standard double type in C/C++
programs, which on usual computers is implemented using a 64-bit IEEE 754 floating-point
representation, for performance reasons, one generally wants to use the operations directly
supported by the underlying hardware, if those are available and correctly rounded. Usually,
the correctly rounded operations include a + b, a − b, a · b, a/b, 1/a and

√
a together with

non-rounding (exact) operations such as −a, min(a, b), max(a, b) and |a|. For other operations
such as sin, cos, tan or similar, one has to rely on correctly-rounded software implementations
such as those provided by MPFR; these are often orders of magnitude slower than their
hardware-supported counterparts.

On CPUs, the rounding mode is usually controlled via a set of global (or rather, thread-
local) flags; typically, the rounding modes round to nearest ties to even, round up, round
down and round towards zero are available, with round to nearest being the default.

Aside from their use in interval arithmetic, non-default rounding modes such as round
down are rarely used. Therefore, hardware is not heavily optimized w.r.t. code that changes
rounding mode often; changing the rounding mode can thus be a rather expensive operation.
Thus, most interval arithmetic implementations, such as the one provided by CGAL, try
to avoid frequent rounding mode changes. For most operations, this can easily be achieved
by observing that −(−a − b) computed in round-down mode is equivalent to computing
a + b in round-up mode, or similar observations for other operations. This is known as the
sign-switching trick and allows one to perform interval arithmetic additions, subtractions,
multiplications and divisions without touching the rounding mode, so long as one initially
sets either round down or round up. The only hardware-supported instruction with correct
rounding that actually requires changes to the rounding mode flag is thus

√
a.

Another, more problematic challenge is the following. Owing to the infrequent and
specialist use of non-default rounding modes and the design decision to make different
rounding modes accessible via a thread-local flag instead of instruction prefixes (which are
common in GPGPU floating-point implementations and much nicer to use in programs),
C/C++ compiler support for different rounding modes is rather poor. In this context,
compiler support means that the compiler can be made aware that the program may change
its rounding mode away from the default. This is important, as compilers typically assume
this will not happen, which causes them to silently break the program they are compiling by
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optimizations that only preserve the result in the default rounding mode. For instance, a
non-supporting compiler will usually treat a + b and −(−a − b) as duplicate computations of
the same value and remove one of the two.

Some major compilers, such as clang, do not officially support the use of non-default
rounding modes at all. While GCC and MSVC both claim support for rounding-mode
changes given appropriate flags at compile time, we encountered several situations where
they still broke programs using an outdated version of CGAL’s interval arithmetic sqrt:
by manually analyzing the generated assembly, we found that in some cases, depending on
where the function was inlined, they reordered rounding mode changes around square root
operations such that both square root operations in an interval sqrt were performed under
the same rounding mode.

Therefore, in many cases, using different rounding modes actually requires some hacky
tricks to work around non-supporting compilers or compiler bugs. In CGAL’s implementation,
this is done by opacifying the values of inputs to rounding operations. In the process, the
inputs are either put as input/output operands into an (empty) inline assembly block or
written to and read back from a volatile variable. Unless the compiler is clever enough to
analyze the contents of the inline assembly, in either case, its optimizer has to assume that
the values are changed arbitrarily; this typically prevents any unwanted optimizations from
occurring. However, it did not appear to always prevent reordering issues; moreover, it can
lead to severely suboptimal assembly being generated. Using CGAL’s implementation, in
some cases, we observed tens of superfluous instructions in a row, all writing the same value
to the same memory address without ever reading it back. In addition, it may happen that,
at some point, a compiler vendor decides to analyze inline assembly, at which point parts of
the opacifying technique may cease to work. Furthermore, there is some genuine potential
for compiler optimizations: for instance, if the result of one interval addition is directly
consumed by another interval addition, e.g., while computing a + b + c, the sign-switching
trick first flips the sign of one of the interval bounds only to flip it again before performing
the second addition; these duplicate switches can safely be eliminated.

These reasons, together with the fact that we needed interval arithmetic operations such
as sin, cos and tan not offered by CGAL, led us to implement our own interval arithmetic
type based on 64-bit IEEE 754 floating-point values. Each interval is stored as two double-
precision floating point numbers packed in a 128-bit vector. Instead of CGAL’s opacification
approach, we implement all non-rounding operations (such as sign-switches, absolute values,
min and max) using standard operators or compiler intrisics, which allow the compiler to
perform regular optimizations on them, such as eliminating duplicate sign-switches. All
rounding operations (additions, subtractions, multiplications, divisions and square roots) are
performed in inline assembly to prevent wrong optimizations; for other operations, we rely
on the MPFR library to provide correctly-rounded implementations. This has the added
benefit of avoiding any ambiguity as to which floating-point implementation is actually used;
we cannot, for instance, run into issues of double rounding that could occur if the compiler
were to select the x87 FPU to implement certain operations for some reason. We also ensure
to set the floating-point environment up so that other potentially problematic options, such
as flushing denormal values to zero before or after operations, are deselected; in our prover,
except for square root operations where we switch to round up temporarily, the rounding
mode is only changed to round down once at program start.

This approach is feasible for us, as we do not need to provide the same support for a vast
variety of hardware architectures and compilers that CGAL, or other interval arithmetic
libraries, have to offer.
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5 Conclusion

We have presented worst-case optimal algorithms for covering equilateral triangles and both
obtuse isosceles triangles and isosceles triangles with sufficiently small apex angle. This gives
rise to numerous followup questions and extensions, for instance how to extend our results to
3D, to all isosceles triangles, or to other shapes such as trapezoids or convex shapes. Similar
to optimal packings of disks, computing optimal coverings by disks is quite difficult. However,
while the complexity of deciding whether a given set of disks can be packed into a unit square
is known to be NP-hard [13], it is still open whether it is NP-hard to decide whether a given
set of disks can be used to cover a triangle. Ironically, it is the higher practical difficulty of
covering by disks that makes it challenging to apply the same proof idea in a straightforward
manner.
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