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Abstract
We study a variety of sparsification approaches for a spectrum of geometric optimization problems
related to tour problems, such as the Angular TSP, the Minimum Perimeter Problem, and the
Minimum/Maximum Area Polygon Problem. To this end, we conduct a thorough study that
compares the solution quality and runtime achieved by integer programming solvers on geometrically
reduced edge sets to the exact solution on the full edge set; considered sparsification techniques
include a variety of triangulations (Delaunay, Greedy, Minimum Weight), Theta and Yao graphs,
Well-Separated Pair Decomposition, and Onion graphs.

We demonstrate that edge sparsification often leads to significantly reduced runtimes. For several
of the considered problems, we can compute within a few seconds solutions that are very close to
being optimal for instances that could not be solved to provable optimality within an hour; for
other problems, we encounter a significant loss in solution quality. However, for almost all problems
we considered, we find good solutions much earlier in the search process than for the complete
edge set; thus, our methods can at least be used to provide initial bounds for the exact solution,
demonstrating their usefulness even if optimality cannot be established.
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1 Introduction

Computing optimal or near-optimal solutions for hard optimization problems is a funda-
mental challenge of applied computation. For an optimization problem, typical approaches
include (1) exact algorithms (e.g., based on integer programming) that compute provably
optimal solutions for interesting benchmark instances; (2) fast lower (or upper) bounds
for minimization (or maximization, resp.) problems, e.g., based on linear programming
relaxations, that provide useful tools for judging the quality of solutions; (3) approximation
algorithms (e.g., based on combinatorial constructions) that achieve feasible solutions in
worst-case polynomial time with provable worst-case guarantees on the objective value; and
(4) mere heuristics (e.g., based on local search) that provide some feasible solution, but
without any performance bounds. Each of these approaches suffers from some deficiencies:
(1) Exact solutions may not be achievable beyond limited instance sizes; (2) lower bounds may
be relatively loose, and do not necessarily provide useful feasible solutions; (3) approximation
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1:2 Edge Sparsification for Geometric Tour Problems

algorithms may be too pessimistic and still leave large gaps; (4) heuristics usually do not
provide any quality measure.

A critical issue when trying to compute good or even optimal solutions for hard optimiza-
tion problems is the complexity of the relevant parameters for increasing instance sizes. In
the case of geometric optimization problems, instances are typically characterized by n, the
number of vertices or points. However, when aiming for optimal geometric structures (e.g.,
good polygonizations), the parameters involved in a problem model may have complexity
Θ(n2) (the number of edges), Θ(n3) (the number of turns) or even Θ(n4) (the number of
intersections between edges). As a consequence, exact methods are faced with rapid growth
of model complexity, sometimes even before the difficulty of computing optimal solutions
kicks in.

To mitigate these complexities, sparsification techniques can be employed. These tech-
niques simplify the model by reducing its complexity to a linear or quadratic number of
variables and constraints. However, note that the mere size is not necessarily a good indicator
for the difficulty of a model. A good sparsification technique not only makes the instance eas-
ier to solve but also ensures the retention of solution quality. Such sparsification is particularly
beneficial for enhancing the scalability of mathematical models or heuristic approaches, often
without necessitating significant alterations to the existing code. Furthermore, sparsification
is invaluable in column generation-based methods, providing an effective initial model.

In this paper, we focus on achieving good (though not necessarily optimal) feasible
solutions for a spectrum of NP-hard geometric optimization problems related to the classical
Traveling Salesman Problem (TSP): for a given set of n points in the Euclidean plane, find a
closed round trip that optimizes some geometric measure. The key objective is to combine
exact methods with geometrically motivated sparsification of the considered edge set to a
linear-sized and sometimes also non-crossing subset, thereby limiting the model size to O(n)
or O(n2) instead of Θ(n4). This allows us to significantly extend the range of computable
solutions. Our main emphasis is on the practical performance of such methods; to this end,
we conduct a study of four natural geometric polygonization problems, for which we compare
the solution qualities of exact solutions for various sparsified models and the exact solutions
on the original edge set.

1.1 Our results
We conduct a thorough study that compares the solution quality and runtime achieved by
integer programming solvers on geometrically reduced edge sets to the exact solution on the
full edge set; considered sparsification techniques include a variety of triangulations (Delaunay,
greedy, Minimum Weight Triangulation (MWT)), Theta and Yao graphs, Well-Separated
Pair Decomposition (WSPD) and Onion graphs. For a variety of tour problems, we get a
spectrum of results, as follows.

For the Angular TSP, which aims at minimizing the total turn cost for a closed tour of n

points in the plane, we found that our sparsification methods allow us to find reasonably
good solutions much faster than for the complete instance. While the final optimality
gap of around 5 % is not negligible, it takes significantly longer to reach this quality on
the complete instances.
For the Angular-Distance TSP, which aims at minimizing a linear combination of turn cost
and distance cost for a closed tour of n points in the plane, we find that our sparsification
methods seem to perform even better than for the Angular TSP. In particular, we find
that even some of our sparsest sparsifications can find solutions that are within not more
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than 4 % from the optimal solution within a few seconds for instances that cannot be
solved to provable optimality within an hour. Denser sparsifications need slightly longer
time, but then achieve a solution quality that is even within 1 % of the optimal solution,
and are still achieved significantly faster than for the complete instances.
For the Minimum Perimeter Polygon Problem (MP3), which aims at finding a polygon
(possibly with holes) of minimum total perimeter on a set of n points, Fekete et al. [23]
presented experimental results for instances of up to 600 points. They showed experimental
results that indicate gaps between optimal solutions and solutions restricted to the edges
of the Delaunay triangulation that on average are about 0.5 %. However, further insights,
e.g., on runtimes, were not provided; we provide such insights. We further extend their
research by applying a larger selection of sparsification methods on a broader range of
instances. We find that some of our sparsification methods perform even better than the
Delaunay triangulation.
We also consider the Optimal Area Polygon Problem, which aims at finding a simple
polygon of minimum or maximum enclosed area for a set of n points. For both problem
variants, our practical results show that it is often much easier to find good solutions than
to establish their quality (or even optimality) by establishing good (or even tight) bounds.
For area minimization, we find that our sparsification methods do result in improved
runtimes; however, the solutions tend to be of little value because the optimality gap is
large. For area maximization, our methods appear to be more successful; nevertheless,
the gaps are still growing with n and could become prohibitively large for even larger
instances.

1.2 Related work
In the following, we first discuss related work on the considered optimization problems, and
then on sparsification techniques.

1.2.1 Optimization problems
Sparsification for the classic Euclidean TSP (in which vertices correspond to points in the
plane, and distances are measured according to the L2 norm)) was studied by Letchford
and Pearson [40], who considered the Delaunay and greedy triangulations for constructing a
planar subset of edges, for which then a shortest tour is computed. On this sparsified set,
they computed optimal solutions for all 58 instances of the TSPLIB [5] with at most 1500
points, and demonstrated that the resulting tours are on average within 0.1 % of optimality,
showing the potential of sparsification. However, this does not address the suitability for a
whole range of related problems that are not just based on minimizing the total perimeter of a
simple polygon, but also on polygons with holes, as well as cost based on turns and area. We
consider a larger spectrum of sparsifying structures, such as Minimum-Weight Triangulation
(which is hard to compute in theory, but easy in practice), see Section 3.1; Theta and Yao
graphs, see Section 3.2; Well-Separated Pair Decompositions, see Section 3.3; and Onion
graphs, see Section 3.4. In addition, we also conduct experiments on a considerably richer
set of instances than the relatively sparse set of TSPLIB instances; see Section 4.

The Angular TSP on Euclidean point sets was introduced and shown to be NP-hard by
Aggarwal et al. [1]; further related work includes Fekete and Woeginger [29], who gave a
spectrum of results for angle-restricted tours, Arkin et al. [3], who considered both general
covering problems with turn cost and the restricted problem on grid graphs, and Fekete et
al. [27], who studied edge covering problems arising from rotating satellites for communication.
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The Angular-Distance TSP was introduced by Savla et al. [50] and further considered by
Medeiros and Urrutia [43]. On the practical side, Staněk et al. [52] were able to compute
exact solutions based on integer programming for instances with up to 75 points for Angular
TSP, and with up to 100 points for Angular-Distance TSP.

Fekete et al. [22] considered the Minimum Perimeter Polygon Problem (MP3) and
presented a generic integer programming formulation for several polygonization problems,
which managed to solve instances with up to 50 points. Fekete et al. [23] have proved the
NP-hardness of the MP3. Furthermore, they presented a more problem-specific integer
program with additional cutting planes, enabling them to solve instances with up to 1000
points. They already studied sparsification techniques by restricting the initial edge set to
edges of the Delaunay triangulation; it turned out that solutions on this restricted edge set
achieve objective function values that lie on average within 0.5 % of the optimum.

The Minimum Area Polygon and Maximum Area Polygon problems were proven to be
NP-hard by Fekete et al. [20, 21, 28], who also gave a 0.5-approximation for Maximum Area
Polygonization. There are practical approaches with a focus on heuristics [47, 48, 53]. Exact
methods were considered by Fekete et al. [22], who have solved instances with up to 16 (for
minimum area) and 19 points (for maximum area). The recent 2019 CG Challenge [16],
based on a wide range of benchmark instances, brought some progress; see Demaine et al. [16]
for an overview, and [15, 18, 33, 39, 49] for a variety of heuristic approaches. Moreover, see
Fekete et al. [25] for progress on exact methods. Note that even the latter ceases to achieve
optimal solutions for instances larger than 25–30 points.

1.2.2 Sparsification

The worst-case ratio t between the shortest distance in a substructure S and the full structure
F is called the stretch factor ; if t is bounded, then S is a t-spanner of F . Most of the existing
body of work focuses on theoretical worst-case bounds; for a broad overview, see the book by
Narasimhan and Smid [46] on geometric spanners. To the best of our knowledge, practical
studies have been limited: Farshi and Gudmondson [19] considered geometric spanners for
randomly generated instances with uniform or normal distribution and 100 to 10 000 points.

There is a substantial body of work on worst-case stretch factors for planar (and thus,
of cardinality Θ(n)) subsets of edges between n points in the plane; e.g., see the survey by
Bose and Smid [8]. A lower bound of

√
2.005367532 ≈ 1.41611 was shown by Mulzer [44]

and recently improved to 1.4308 by Dumitrescu and Ghosh [17]. They also showed a lower
bound of 2.0268 for the greedy triangulation. Chew [13] showed that the L1- and L∞-metric
Delaunay graph is a

√
10-spanner; this was improved by Bonichon et al. [6] to

√
4 + 2

√
2,

which is tight in the worst case. The best known upper bound for the Delaunay triangulation
is 1.998, as shown by Xia [55]. If a constrained plane geometric graph has the α-visible
diamond property for each of its edges and the d-good polygon property, it is a 8d(π−α)2

α2 sin2(α/4) -
spanner of the visibility graph of P (point set) and L (constrained edges that block visibility);
see [7]. Every triangulation has the 1-good polygon property and the MWT has the diamond
property for α = π/4.6, implying that the MWT is a 3591.33-spanner.

Because of the close connection to practical exploitation and implementation, more
specific related work on particular sparsification techniques is provided in the respective
parts of Section 3.
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2 Integer Programming models

Now we describe the integer programming models that we use to solve sparsified and
complete instances of our problems. The Angular TSP and Angular-Distance TSP are two
special cases of the Quadratic TSP (QTSP), which was originally introduced by Jäger and
Molitor [37], based on an application in biology. Asymmetric QTSP instances that arise
from this application have been solved with up to 100 vertices [30]. In the QTSP, instead of
the edge costs cij that we have to pay for each edge ij that we use in the regular TSP, we
incur costs for all pairs of incident edges in the tour. In other words, we have to pay some
cost cijk if we use the edges ij and jk, i.e., if our tour visits the vertices i, j, k consecutively
in that order. Thus, the Angular TSP is a special case of the QTSP in which the costs cijk

correspond to the cost of the turn i, j, k. Similarly, the Angular-Distance TSP can be cast as
a special case of the QTSP by setting cijk to the cost of the turn i, j, k plus half the cost of
each of the edges ij and jk. We use the integer programming model by Fischer et al. [30],
which has one binary variable xijk for each turn i, j, k, to solve both the Angular and the
Angular-Distance TSP.

In the Minimum Perimeter Polygon Problem (MP3), in contrast to the TSP, holes within
the polygon are allowed, so not every occurring subtour is necessarily invalid. Therefore,
Dantzig’s classical IP formulation (based on the well-known Subtour Elimination constraints)
cannot be applied in a straightforward manner; instead, the hierarchical geometric structure
of the MP3 requires the use of more advanced cutting planes, as provided by Fekete et al. [23].
We make use of these to model and solve the MP3.

For the Optimal Area Polygon Problem, we use the formulations proposed by Fekete et
al. [24]. Their experimental evaluation has shown that the minimization and the maximization
variants require different models to achieve a reasonable performance. For area maximization,
they used an edge-based integer program, which has one binary variable for each directed
edge. The area is deduced by creating a single triangle per edge to a reference point and
adding or subtracting its area depending on the direction of the edge. For area minimization,
they used a triangle-based formulation that has one binary variable for each empty triangle
of the given point set.

Because the details of these formulations are not crucial for the following analysis, we
refer to the respective papers for more detailed descriptions of these formulations.

3 Sparsification methods

The complete graph on a given set P of n points contains all Θ(n2) possible edges on the
points from P . Furthermore, the number of constraints when aiming for a non-crossing
set of edges is even larger: As shown by Lovász et al. [42], any set of n points in the
plane contains Θ(n4) convex quadrilaterals, and thus, Θ(n4) crossing pairs of edges. As a
consequence, employing straightforward IP formulations quickly becomes impractical. Our
aim is to replace the complete graph by a suitable subgraph with a strongly reduced edge set
(but the same points) such that we can, in practice, solve larger instances of our problems
without drastically degrading our solution quality. Generally, our goal is to reduce the
number of possible edges to O(n). In this section, we describe the sparsification methods we
considered as candidates for the generation of such subgraphs; we experimentally evaluate
their suitability for the considered problems in Section 4. Examples for the sparsified graphs
can be found in Figure 3.
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3.1 Triangulations
Triangulations are a particularly well-studied type of sparse subset of the set of all edges on a
point set P . Furthermore, triangulations have been applied to find an initial (or reduced) edge
set for the exact (or heuristic) solution of several tour problems [23], including the seminal work
of Applegate et al. [2] on the TSP. We consider some of the most famous and well-studied
types of triangulation, namely the Delaunay Triangulation (DT(P )), Minimum-Weight
Triangulation (MWT(P )), and Greedy Triangulation (GT(P )). The Delaunay triangulation
maximizes the minimum angle of all triangles and can be computed in O(n log n) time. We
use the CGAL [54] implementation to compute Delaunay triangulations.

The Minimum-Weight Triangulation (MWT) minimizes the total weight of all edges. In
theory, the MWT(P ) is NP-hard to compute, as shown by Mulzer and Rote [45]. While
this establishes hardness from a theoretical perspective, Haas [35] has demonstrated that
by combining clever local heuristics (previously considered by Beirouti and Snoeyink [4])
based on geometric insights, along with an array of modifications, parallelizations, and
improved geometric encodings and data structures, it becomes feasible to compute provably
optimal solutions for instances containing up to 30 000 000 points in less than 4 minutes. As
a consequence, computing and using an optimal MWT is a practically feasible approach. We
used an extended [26] implementation of Haas’s procedure [35] to compute the MWT for our
experiments.

The greedy triangulation attempts to approximate the MWT by iterating over all edges
in non-decreasing order of their length, inserting the edges that do not cross any previously
inserted edges. While this naive method runs in time O(n3), the greedy triangulation
can also be computed in subquadratic time [41]. For our experiments, we use the algo-
rithm of Goldman [32] that runs in O(n2 log n) time and utilizes a constrained Delaunay
triangulation for its construction.

3.2 Theta and Yao graphs
The Thetak and Yaok graphs are two similar types of graphs, based on the idea of subdividing
the plane around each point p ∈ P into k cones of equal angle Θ = 2π

k and connecting p to
the closest point in each cone. The graphs differ in how they define the closest point in each
cone. Both are sparse spanners for constant k > 1, have at most k · n edges, and are typically
not planar. Note that these graphs do not immediately have vertices of bounded degree.
Theta graphs were introduced by Clarkson [14] to approximate a motion planning problem
with obstacles, and independently by Keil [38]. Yao graphs were introduced by Flinchbaugh
and Jones [31], and Yao [56]. Both graphs can be computed in O(n log n) time [46, 11]. We
use the CGAL library [54] to compute these graphs.

The closest point in each cone is defined as follows. In Theta graphs, each cone originating
from a point p has an associated ray ℓ, which is the bisector of that cone, and the closest
point in a cone is the one whose orthogonal projection to ℓ is closest to p. In Yao graphs,
the closest point in each cone is the one closest to p w. r. t. the Euclidean distance.

3.3 Well-Separated Pair Decomposition
The Well-Separated Pair Decomposition (WSPD) was introduced by Callahan and Kosaraju [9,
10] for efficiently computing the k-nearest neighbors. There are many other applications, such
as approximating the Euclidean Minimum Spanning Tree or solving closest pair problems,
see [51] for a comprehensive overview.
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A WSPD graph of a point set P with some given separation factor s induces a t-spanner
with t = (s+4)

(s−4) for s > 4 by selecting an arbitrary edge pq, p ∈ Ai, q ∈ Bi for each well-
separated pair Ai, Bi in the WSPD [9]. A WSPD of a point set P with respect to separation
factor s > 0 can be computed in O(n log n) time. Arbitrarily selecting edges between well-
separated pairs always results in a t-spanner, and the resulting number of edges for a WSPD
is always the same. However, the suitability of the resulting edge set may depend on how the
endpoints are selected. The used implementation is based on the description of Smid [51].
We use three different variants to create a sparsified graph from the WSPD, which differ in
how they select the edge for connecting the well-separated pairs:
Variant 1: For every well-separated pair A, B, choose p ∈ A and q ∈ B with minimum

distance d(p, q).
Variant 2: Choose the edges based on an auxiliary integer program that minimizes the

maximum degree of all vertices. As the integer program is not guaranteed to yield a
solution within a reasonable time for all instances, we are not able to use this variant for
all instances.

Variant 3: Choose the edges using a greedy algorithm that tries to minimize the maximum
degree by selecting some p ∈ A and q ∈ B with deg(p) minimal in A and deg(q) minimal
in B for every well-separated pair A, B.

3.4 Onion graphs
Chazelle [12] provided a space- and time-optimal algorithm to compute the convex layers of
a point set. This algorithm runs in O(n log n) time and requires O(n) space. The convex
layers of a point set P can be obtained by repeatedly computing the convex hull of P and
removing these points until no more points are left. We use this principle to compute the
convex layers, and finish up by merging successive layers with one of the following strategies.
We call these graphs Onion graphs.
onion-0 Connect each vertex to all vertices of the next layer.
onion-1-k Connect each vertex to the k closest vertices of the next layer.
onion-2-k Given a vertex v on layer L. Let u, respectively w, be the predecessor, respectively

successor of v on L. We connect v to the k vertices of the next layer with the lowest
turning angle when moving from u to v. Analogously, we insert k edges with lowest
turning angle when moving from w to v.

3.5 Overview
We adopt the following notation to identify sparsification methods and their parameters.

mwT , greedyT and delaunayT, are the Minimum-Weight, greedy and Delaunay triangula-
tions,
onion-c-k is the Onion graph, with c encoding which of the three inter-layer connection
methods described in Section 3.4 we use, and k denoting the connection parameter,
theta-k-o and yao-k-o are the Theta and Yao graphs, with k denoting the number of
cones, and o encoding whether we take only even (o = 0), only odd (o = 1) or all cones
(o = 2), and
wspd-t-c is the WSPD, with t ∈ {2, . . . , 8} encoding the guaranteed stretch factor, and
c ∈ {1, 2, 3} denoting how the well-separated pairs were connected, as described in
Section 3.3.

If a sparsification method depends on parameters, for our experimental evaluation, we
consider the parameters outlined above.

CGT
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Figure 1 Average number of edges for a selection of sparsification methods. (Left) The line plot
shows how the absolute number of edges increases with the number of vertices. (Right) The bar
plot shows the relative number of remaining edges compared to the full graph for fixed numbers of
vertices ({20, 100, 400}). All triangulations and all full k-cone graphs for fixed k contain the same
number of edges; therefore, they are combined in the figure. We see in the bar plot that especially
the Well-Separated Pair Decompositions still have around 50 % of the edges in a graph with 100
vertices. Among all depicted methods, the triangulations have the smallest numbers of edges. As all
considered sparsification methods grow linearly in size (as shown in the line plot), all methods show
a significantly reduced edge set for larger instances. The instances were taken from the benchmark
set described in Section 4.1.

The different sparsification methods result in vastly different total edge counts, though
all of them become small compared to the full edge set for larger n. Figure 1 shows the
number of edges over a large set of sample instances. Generally speaking, of all methods
under consideration, triangulations have the smallest numbers of edges, followed by cone
graphs and Onion graphs. The WSPD-based sparsifications tend to have the largest number
of edges; their edge counts grow when reducing the spanning ratio t. (Note that the numbers
of edges do not yet indicate the actual performance for a sparsified set; this is evaluated in
the following section.)

3.6 Infeasible instances

When we restrict our edge set, we cannot always guarantee that the problem we are interested
in still has a solution on this reduced set. In particular, for the Angular and Angular-
Distance TSP, the resulting graph needs to be Hamiltonian. Additionally, for Optimal Area
Polygonization, the Hamiltonian cycle needs to be non-crossing. For the MP3, the graph
needs to contain a polygon (with holes) on all vertices. As some type of Hamiltonicity
plays a role for all polygonizations, we depict the fraction of non-Hamiltonian instances
resulting from our sparsification methods in Figure 2. We see that half-cone graphs are often
non-Hamiltonian; we thus disregarded them for all ensuing evaluations.

4 Experimental evaluation

Now we evaluate the practical impact of the edge sparsification methods presented in Section 3
on the solution of our problems using the integer programming models presented in Section 2.
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Figure 2 Number of non-Hamiltonian sparsifications. The color of each field indicates the
percentage of non-Hamiltonian graphs for a sparsification method and instance size. Brighter
columns correspond to sparsification techniques that yield many non-Hamiltonian graphs.

We evaluate three different elements in our experiments, highlighting three different aspects:
(potential) solution quality, runtime, and solution quality over time.
Solution quality: How good are the solutions on the sparsified graphs compared to the

complete graph? To assess the quality of solutions on the sparsified graphs in comparison
to the complete graph, we face the challenge of computing optimal solutions for both
scenarios. However, this may not always be feasible, prompting us to solve the integer
programs with generous time limits and utilize the best solution achieved within that time
frame. Instead of comparing to a possibly non-optimal solution on the complete graph,
we opted to benchmark against the best lower bound provided by Gurobi or CPLEX for
the complete graph. By dividing the objective value by this lower bound, we obtain a
reliable indicator of solution quality, with 1.0 representing optimality.
We could also use lower bounds for the sparsified graphs, to get a true lower bound on
the achievable solution quality, but this would give an undesirable advantage to sparsified
graphs in which the optimal solution is difficult to find, contradicting the primary objective
of simplifying the involved computation.
Our analysis involves using a heatmap to identify the most intriguing sparsification
methods, as well as a line plot for a detailed examination of these.

Runtime: How much faster can we solve the problem on the sparsified graphs compared to the
complete graph? Determining the extent of speed improvement when solving the problem
on sparsified graphs as compared to the complete graph poses a challenging question.
Numerous methods exist to solve these problems beyond our integer programs, making a
definitive answer elusive. Nonetheless, employing state-of-the-art integer programming
solvers and carefully chosen formulations allows us to assume that the runtime differences
between the complete and sparsified graphs serve as a valuable indicator for the speed-up
of other algorithms.
To gain insights, we employ a heatmap to visualize the percentage of instances solved
within a short time limit, enabling us to identify the most intriguing sparsification
methods. The short time limits for each problem are carefully fine-tuned to reveal
differences between sparsification techniques, while ensuring a reasonable number of
solved instances. Subsequently, we use a line plot to delve into the concrete runtime of
these selected methods.

Solution quality over time: How efficiently can we discover good solutions on the sparsified
graphs in comparison to the complete graph? This question provides deeper insights into
how sparsification impacts the search process, extending the previous question, which
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(a) Delaunay triangulation:
n = 10, m = 22.

(b) Greedy triangulation:
n = 10, m = 22.

(c) Min-Weight Triangulation:
n = 10, m = 22.

(d) Theta (theta-6-2 ):
n = 10, m = 22.

(e) Yao (yao-6-2 ):
n = 10, m = 22.

(f) WSPD (wspd-8-3 ):
n = 10, m = 29.

(g) Onion graph (onion-1-1 ):
n = 20, m = 40.

Figure 3 Examples of the various sparsification types, with n points and m edges. The example
for the Onion graph is a different instance because the smaller instance would not show any
characteristics.
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only considered the runtime until termination. In some instances, the integer program on
the complete graph may quickly find a good solution but may still require a long time to
prove optimality. In such cases, the integer programming solver gains no advantage from
the sparsified graph. However, if the integer program exhibits significant speed-up on the
sparsified graph, it suggests that the sparsification could also be beneficial for computing
optimal solutions via column generation or other approaches.
To assess the quality over time, we monitor the objective values in Gurobi and compare
them to the best proven lower bound on the complete graph. This metric is identical
to the previously used one, but measured continuously over time. Due to the use of a
different implementation based on CPLEX for the two area optimization problems, we
lack this data, and exclude them from this specific analysis.

4.1 Instance types

Our research questions were addressed by conducting computational experiments on a variety
of meticulously crafted benchmark instances with varying types and sizes. To this end, we
generated instances from five specific categories. We obtained uniform instances by picking
points uniformly at random within a square with some side length a; the coordinates can be
restricted to integers (uniform_int) or not (uniform_real). Instances of type normal arise
by picking point coordinates independently according to a normal distribution with mean 0
and some standard deviation σ.

We also generated instances based on images by deriving a two-dimensional density
function on some rectangular subregion of R2 from some feature of the image’s pixels. In
particular, we produced image_brightness instances by mapping the brightness distribution
of an image to a density function from which points were sampled. image_edge instances were
produced by first applying an edge-finding algorithm to an image, resulting in a preprocessed
image in which pixels that are likely to contain an edge of the original image are black and all
other pixels are white. We then sampled points from regions corresponding to black pixels. As
images, we used satellite imagery (illumination by night), images of space telescopes, famous
art, portraits of politicians, and some random photos, such as a picture of our university
building.

For each of the previous instance types, we generated 10 instances for every size from 5
to 600 with step size 5. In addition, instances from the TSPLIB [5] were used; note that their
quantity is low compared to the other instance types. As their total number is also low, they
only have a minor impact on the overall results for the total set of 7007 instances.

4.2 Experimental environment

We ran our experiments on the following computing platforms, each with a common software
environment based on Ubuntu 20.04 LTS:
algpc Intel Core i7-6700K CPU with 4 cores and 8 threads clocked at 4.00 GHz base-frequency

with 64 GB of RAM.
algry AMD Ryzen 7 5800X CPU with 8 cores and 16 threads clocked at 4.00 GHz base-

frequency with 128 GB of RAM.
We use the MIP solvers IBM ILOG CPLEX 12.9 [36] for optimal area polygonization and
Gurobi Optimizer 9.1.1 [34] for all other problems, both with their default parameter settings.
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4.3 Angular TSP
Recall that we use the integer programming formulation by Fischer et al. [30] to solve the
Angular TSP: To deal with rounding issues, this involves scaling the actual angles in radians
by 1000 and then rounding them to 12 decimal places to obtain the actual costs cijk. All
Angular TSP experiments were run on algpc. We evaluated our approach on instances of
size 5 to 75, resulting in 758 instances in total.

We disregarded all sparsification techniques for which less than 95 % of the edge sets were
Hamiltonian. The results of our experiments for the remaining methods are summarized in
Figures 4–6.

Our analysis reveals a consistent advantage in runtime by the sparsified instances. Among
the sparsifications evaluated, those based on the Well-Separated Pair Decomposition (WSPD)
stand out for delivering stable and reasonable solution quality, maintaining an optimality
gap of less than 4 % (measured at n = 70). In contrast, the other approaches exhibit rapidly
increasing optimality gaps, quickly exceeding 20 % and even exceeding 50 %.

For example, in cases with 60 vertices, the computation time for the model using the
complete graph averaged 893 s. Meanwhile, the wspd-2-1 model required significantly less
time, averaging 156 s, and the onion-1-1 model terminated even faster, in just 0.1 s. This
disparity raises an intriguing question about the potential utility of the faster, yet less
accurate methods, such as the onion-1-1 sparsification, in generating initial solutions.

Observing the optimality gap over time, it becomes apparent that WSPD-based methods
almost match the onion-based methods in speed for arriving at high-quality solutions. They
quickly achieve a high solution quality, but then require a prolonged period to confirm
optimality. The Onion and Yao graph methods initially provide a slightly better solution
quality, but only for the first few seconds. Therefore, if the primary goal is not solely rapid
solution generation, the WSPD-2-1 method emerges as the preferable option for the Angular
Traveling Salesman Problem.

4.4 Angular-Distance TSP
When the cost of a tour does not only depend on its turning angles, but also on the edge
length of the involved edges, the Angular TSP turns into the Angular-Distance TSP, for
which travel costs arises as a linear combination of the turning angle and the mean edge
length. Following the literature [30, 52], we set the edge costs to

cijk = 40αijk + dij + djk

2 ,

where αijk is the turning angle for the turn i, j, k in radians. According to previous studies,
this value is a suitable choice—neither too close to the TSP nor too close to the Angular
TSP—for instances with integer coordinates uniformly sampled from a square of side length
500. Just like [30, 52], we scale all instances to coordinates in the range [0, 500]; the costs are
then scaled by 100 and rounded to 12 decimal places. (Because of the linear combination of
distance and angle, this differs from the pure Anguler TSP, where a factor of 1000 was used.)

We evaluated instances ranging from 5 to 90 points, resulting in a total of over 900
instances. All Angular-Distance TSP experiments were run on algry using the same integer
programming implementation as for the Angular TSP, only with a different cost function.
The results of our experiments are summarized in Figures 7–9.

Again we find that solving the problem on the sparsified graphs has a significant advantage
w. r. t. runtimes. The loss of solution quality on the sparsified graphs for the Angular-Distance
TSP is also significantly less than for the Angular TSP. However, for most sparsification
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Figure 4 Solution quality for Angular TSP, measured in objective value divided by best known
lower bound for the corresponding instance (1.0 is optimal). (Left) The heatmap provides an
overview of all sparsification techniques. Brighter columns show a higher deviation from the optimum.
If the top of the column gets brighter, the solution quality decreases with the instance size. The
triangulations show particularly bad solutions. (Right) The line plot shows the mean solution
quality over instance size for a selected number of promising candidates. wspd-2-1 shows a stable
optimality gap of around 4 %. The optimality gaps of onion-0 and yao-6-2 start low but are linearly
increasing, far above the previous two.
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Figure 5 Runtime for Angular TSP. (Left) The heatmap measures the runtime in percentage of
instances that could be solved within 30 s to proved optimality (on the limited edge set). Brighter
columns indicate a better mean runtime. While the WSPD yields a high solution quality, the runtime
is also relatively high but better than on the complete graph. The other sparsification techniques are
significantly faster. (Right) The line plot shows the mean runtime over instance size for promising
candidates. wspd-7-3 is much faster than wspd-2-1 and wspd-2-3, which sometimes need almost half
the complete graph’s solution time. onion-0 and yao-6-2 are almost immediately solved.
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Figure 6 Average optimality gap during the optimization over time for Angular TSP in Gurobi
(without model building) for instances with 65, 70, resp. 75 vertices. The complete graph reaches good
objectives reasonably fast; however, in the first seconds, the sparsified graphs perform considerably
better. The WSPD-graphs can even maintain this lead over several minutes. While solving them to
proved optimality still takes a lot of time, they reach near optimality very quickly and significantly
faster than the complete graph. Further, despite the later termination, wspd-2-1 reaches the solution
quality of the quickly terminating onion approaches similarly fast, it just continues to improve
afterward. The runtimes in Figure 5 can thus be misleading on their own.
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Figure 7 Solution quality for Angular-Distance TSP, measured in objective value divided by best
known lower bound for the corresponding instance (1.0 is optimal). (Left) The heatmap provides an
overview of all sparsification techniques. Brighter columns show a high deviation from the optimum.
If the top of the column gets brighter, the solution quality decreases with the instance size. The
solution quality is generally much better than for Angular TSP; all sparsification methods except
for the Onion graphs achieve relative gaps below 10 %. (Right) The line plot shows the mean
solution quality over instance size for a selected number of promising candidates. wspd-2-1 shows a
stable optimality gap of less than 1 %. The optimality gaps of the other sparsification techniques are
worsening with the instance size.
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Figure 8 Runtime for Angular-Distance TSP. (Left) The heatmap measures the runtime in
percentage of instances that could be solved within 15 s to proved optimality (on the limited edge
set). Brighter columns indicate a better mean runtime. The runtime is similar to Angular-TSP; the
WSPD-graphs are slower than the others, but faster than the complete graph. (Right) The line
plot shows the mean runtime over instance size for promising candidates. wspd-2-1 takes nearly half
the time of the complete graphs, while the other techniques have a negligible runtime.

0 20 40 60 80 100

Time (s)

1.0

1.1

1.2

1.3

1.4

O
b

j.
/L

B

80 Vertices

complete

delaunayT

wspd2-1

yao6-2

0 25 50 75 100

Time (s)

85 Vertices

0 25 50 75 100

Time (s)

90 Vertices

Figure 9 Average optimality gap during the optimization over time for Angular-Distance TSP in
Gurobi (without model building) for instances with 80, 85, 90 vertices, resp. Similar to Angular
TSP, Gurobi finds a near-optimal solution within the first two minutes, even on the complete graph.
The full-cone Yao graph with 6 cones finds solution with an optimality gap of less than 4 % within
the first seconds, but barely improves afterward. The WSPD graphs need around 30 s, but then
yield solutions with an even better gap of only around 1 %. The complete graph often needs several
minutes to find a competitive solution.
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methods, the relative gap to the optimal solution still seems to grow with n. The WSPD
may again provide a significant improvement in runtime with a low and stable gap. If we
consider the task of finding good upper bounds during the solution process, the sparsification
methods again produce good solutions much earlier than the solution process on the complete
graph and may be used to provide useful initial solutions for computing optimal solutions.
In contrast to the Angular TSP, the lower quality sparsifications actually have visibly better
solutions than the WSPD-based ones for multiple seconds. For instances with 90 vertices,
wspd-2-1 needs around 30 s to reach a lower optimality gap than yao-6-2. For the Yao graphs,
we find that it can take the solver on the complete graph more than 90 s to find a solution
that is as good as the one found on the sparsified graph within 5 s. Furthermore, for several
of the fast sparsification methods, we were able to compute within a few seconds a solution
of at most 5 % above the optimum value for some instances that could not be solved to
optimality within one hour. This implies that it coule be beneficial for an approach based on
column generation to start with yao-6-2, and then add the edges of wspd-2-1 in the next
iteration.

4.5 Minimum perimeter polygons

Our experimental results on the Minimum Perimeter Polygon Problem (MP3) are based on
instances ranging from 5 to 600 points, resulting in a total of over 6000 instances. All MP3
experiments were run on algry utilizing the integer programming formulation by Fekete et
al. [23]. We set a time limit of 600 s.

Our experimental findings, detailed in Figures 10–12, highlight the significant benefit of
sparsification in solving MP3 problems. Remarkably, in cases involving up to 300 points,
sparsification methods like MWT or greedy triangulation achieved solutions with an optimality
gap under 0.35 % in mere seconds. This performance surpasses that of the Delaunay
triangulation method, initially proposed by Fekete et al. [23].

Apart from onion hulls and WSPDs, which showed subpar results, other sparsification
techniques consistently yielded an optimality gap near 0.5 %. However, as the problem size
increases, the optimality gap for larger instances rises to approximately 1.2 % for MWT or
greedy triangulation and 1.5 % for Delaunay triangulation, theta-6-2, and Yao graphs. For
these larger instance sizes, the solver struggles to find a feasible solution on the complete
graph within 600 s, which potentially also weakens the lower bounds used for evaluations.

A plausible explanation for the difficulty of obtaining feasible solutions on the complete
graph is that the majority of found integral solutions are infeasible, i.e., they have forbidden
holes that have to be prevented by lazy constraints. While the MP3 is less constrained than
the TSP, separating infeasible solutions needs more precision, and is thus more difficult. Here
the sparsified models offer an additional advantage besides their significantly fewer variables:
The sparsified graphs allow fewer perturbations that can be used to circumvent the newly
added constraints. This allows us to rapidly obtain near-optimal solutions on instance sizes
for which the IP solver struggles to even find feasible solutions on the complete graph.

It should be noted that our model’s implementation appears less efficient compared to
the one by Fekete et al. [23]. This observation can be attributed to a couple of key factors.
Firstly, unlike the approach by Fekete et al., we do not employ warm starts and column
generation. Secondly, our study utilizes a more diverse set of instances, which may contribute
to the observed differences in efficiency.
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Figure 10 Solution quality for MP3, measured in objective value divided by best known lower
bound for the corresponding instance (1.0 is optimal). (Left) The heatmap provides an overview of
all sparsification techniques for which at most 5 % of the edge sets were non-hamiltonian. Brighter
columns show a high deviation (clipped at 3.0) from the optimum, thus, a worse performance. If the
top of a column gets brighter, the solution quality decreases with the instance size. The solution
quality is excellent for all considered sparsification techniques, except for the onion hulls and the
WSPD. (Right) The line plot shows the mean solution quality over instance size for a selected
number of promising candidates. For the complete graph, it can become difficult to find feasible
solutions for larger instances, resulting in some erratic behavior around 250 points. Up to this size,
Minimum Weight and greedy triangulations have an optimality gap of less than 0.35 %. Delaunay
triangulation, theta-6-2, and Yao graphs are slightly above 0.5 %.
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Figure 11 (Left) Percentage of MP3 instances that could be solved to optimality within 600 s. All
infeasible instances are counted as unsolved. Brighter columns are better. We see that triangulations
and cone-based graphs are all fast, finishing within mere seconds, whereas wspd-2-2, wspd-2-3
and onion-0 have a visibly higher runtime. (Right) Mean runtime over instance size for selected
sparsification techniques.
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Figure 12 Average optimality gap during the optimization over time for MP3 in Gurobi (without
model building) for instances with 200, 250, 300 vertices, resp. All considered sparsification techniques
reach a near-optimal solution equally fast, with the minimum weight and greedy triangulation reaching
slightly better solutions over time. The sparsification techniques are significantly faster than working
on the complete graph.
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4.6 Area-optimal polygons

Among all problems we consider, the optimal area polygonization problems appear to be the
hardest to solve in practice. The best approaches that we are aware of are only sufficient for
solving instances of up to 25 points. All experiments were run on algpc, utilizing the two
integer programming formulations by Fekete et al. [24], which we adapted to sparse graphs.
We used instances ranging from 5 to 23 points, resulting in more than 950 instances in total.

As discussed in Section 2, we used different formulations for area minimization, where we
used a triangle-based formulation, and area maximization, where we employed an edge-based
approach. This affects the feasibility of instances, as the triangle-based formulation only
works if the edge set contains an n-vertex (simple) polygon and a triangulation, whereas
the edge-based approach only requires an n-vertex polygon. Compared to the situation
for Angular TSP, this does not only exclude half-cone graphs, but also all WSPD-based
sparsifications, in particular those with larger stretch factors. For area minimization, all
WSPD-based spanners resulted in more than 10 % infeasible instances. For this reason, we
disregarded the WSPD-based sparsifications for area minimization, but included them for
area maximization.

4.6.1 Area minimization

Figure 13 summarizes our experimental results with respect to runtimes and optimality gaps
for area minimization. The different sparsifications achieve fast, almost indistinguishable
runtimes, theta-12-2 and yao-12-2 being the slowest among them. In terms of runtime, the
triangle-based formulation gives triangulations an advantage in the solution process because
there are no overlapping triangles.

Triangulations and 6-cone-graphs result in solutions with average gaps above 100 % on
larger instances with ongoing continuous growth. 12-cone graphs achieve lower gaps of (on
average) less than 100 %, but are also getting larger with the number of points. Despite being
very fast to solve, onion-1-3 initially performs surprisingly well. However, unlike the 12-cone
graphs, onion-1-3 sparsified instances show a clear and steep increase in the objective value
gap. onion-0 starts slightly worse that onion-1-3, but its gap increases slightly slower. At
20 points, both have a gap of around 60 %. Overall, none of the sparse graphs resulted in
practically interesting objective value gaps. We conclude that none of our approaches seem
to capture the relevant edges for area minimization well; in particular, optimal solutions tend
to include long edges, which none of our sparsification approaches focus on. Furthermore, we
note that for area minimization, the difficulty of finding provably optimal solutions largely
stems from finding good lower bounds. Thus, we are rather pessimistic about the speed-up
that can be achieved by providing the optimization process with a good initial solution early
on.

All this reflects the known difficulties of area-minimal polygonization, which is extremely
hard to solve in practice. A possible explanation is the combination of a large number of
potential neighbors (because a polygon with small area may contain very long edges, so there
are many potential neighbors for each point), with significant gaps between similar solutions
(because even a small modification of a polygon with small objective value may result in
significantly increased area). This greatly differs from problems such as the TSP, for which
solutions are both better localized and gaps between similar solutions are relatively small.
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Figure 13 Solution quality (top) and runtime (bottom) for various sparsification methods for
area minimization. (Top left) The upper heatmap shows that all methods have a visible optimality
gap, some above twice the optimal value (yellowish color). onion-0, onion-1-3, onion-2-3, theta-12-2,
and yao-12-2 (nearly identical to theta-12-2 ) yield the best results, as indicated by the darker colors.
(Top right) The line plot provides a more detailed view of the optimality gap over instance size for
these three methods. onion-0 and onion-1-3 produce good solutions for small instances, but their
optimality gaps increase until it has the same as theta-12-2 and yao-12-2 (around 60 %). (Bottom
left) The lower heatmap shows how many instances could be solved within 15 s. While optimizing
on the complete graph quickly already needs more than 15 s for just 20 points (dark color), nearly
all sparsified instances can be solved within this time, as indicated by the uniformly bright color.
(Bottom right) The line plot shows the mean runtime over instance size for the three methods
with the best solution quality. The yao-12-2 has a slight increase at the end, but all methods are
significantly faster than considering the complete graph.

4.6.2 Area maximization
Area maximization turns out to be more tractable. Figure 14 summarizes the results of our
experiments: Sparsification leads to a significant improvement in runtime. We find that our
methods perform better than for area minimization; however, not just the absolute, but
also the relative gap between the optimal solution on the complete graph and on sparsified
graphs still grows with n, albeit more slowly. Similarly to the situation for area minimization,
we find that onion-0 performs well, even compared to sparsifications with much greater
solution times; however, its objective value gap also quickly increases with instance size. The
fast solution time of the sparsified instances may still make them useful for finding initial
solutions for area maximization.

5 Conclusions

We have studied a considerable number of sparsification techniques for a collection of
geometric tour problems, and provided a spectrum of practical outcomes. By and large, the
practical performance of the corresponding practical techniques corresponds to the practical
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Figure 14 Solution quality (top) and runtime (bottom) for various sparsification methods for
area maximization. (Top left) The upper heatmap shows by a bright color a good solution quality
for onion-variants, theta-12-2, wspd-2-3, and yao-12-2. Note that here the columns with darker
colors indicate a worse solution quality, as the objective value is maximized. (Top right) The line
plot provides a more detailed view of the optimality gap over instance size for these four methods.
onion-0 has the best solution quality of less than 3 % below the optimum, but its optimality gap
increases with the instance size. (Bottom left) The lower heatmap shows how many instances
could be solved within 15 s. onion-0 and wspd-2-3 are hitting the time limit for some instances with
more than 20 points (dark color), but visibly less than the complete graph. (Bottom right) The
line plot shows the mean runtime over instance size for the four methods with the best solution
quality. Here we see that all methods are indeed significantly faster than the complete graph, only
wspd-2-3 shows a visible increase in runtime.

difficulty of solving benchmark instances of the considered optimization problems to provable
optimality: For the problems that were known to be somewhat accessible to exact methods
(such as the Minimum Perimeter Polygon Problem), we were able to tighten previously
known methods; for problems of notorious difficulty (such as Minimum Area Polygonization),
the resulting gaps were larger, but still useful due to the lack of other good bounds. An
overview is given in Table 1.

Overall, this shows that sparsification techniques are definitely useful tools for extending
the practical spectrum of solution time versus quality tradeoff for hard geometric optimization
problems.
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Table 1 Summary of the most promising sparsification techniques for each problem. For all
problems, the best sparsification technique is significantly faster than the complete instance. The
most notable effect is the drastic speedup for the Minimum Perimeter Problem. For the Minimum
Area Polygonization, the sparsified graphs are significantly faster, but the solution quality is low.

Problem Best sparsification Optimality gap Speed-up

Angular TSP wspd-2-1 4 % (stable) significantly faster
Angular-Distance TSP wspd-2-1 0.5 % to 1.0 % (stable) significantly faster
Minimum Perimeter greedyT, MWT 0.3 % to 1.2 % (incr.) drastically faster
Min Area Polygonization onion-0 60 % (incr.) significantly faster
Max Area Polygonization onion-0 2 % to 3 % (incr.) significantly faster
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