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Abstract
Let P be a set of n points in the plane, where each point p ∈ P has a transmission radius r(p) > 0.
The transmission graph defined by P and the given radii, denoted by Gtr(P ), is the directed graph
whose nodes are the points in P and that contains the arcs (p, q) such that |pq| 6 r(p).

An and Oh [Algorithmica 2022] presented a reachability oracle for transmission graphs. Their
oracle uses O(n5/3) storage and, given two query points s, t ∈ P , can decide in O(n2/3) time if there
is a path from s to t in Gtr(P ). We show that the clique-based separators introduced by De Berg et
al. [SICOMP 2020] can be used to improve the storage of the oracle to O(n

√
n) and the query

time to O(
√

n). Our oracle can be extended to approximate distance queries: we can construct,
for a given parameter ε > 0, an oracle that uses O((n/ε)

√
n log n) storage and that can report in

O((
√

n/ε) log n) time a value d∗
hop(s, t) satisfying dhop(s, t) 6 d∗

hop(s, t) < (1 + ε) · dhop(s, t) + 1,
where dhop(s, t) is the hop-distance from s to t. We also show how to extend the oracle to so-called
continuous queries, where the target point t can be any point in the plane.

To obtain an efficient preprocessing algorithm, we show that a clique-based separator of a set F

of convex fat objects in Rd can be constructed in O(n log n) time.
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1 Introduction

Let P be a set of n points in the plane, where each point p ∈ P has an associated transmission
radius r(p) > 0. The transmission graph defined by P and the given radii, denoted by Gtr(P ),
is the directed graph whose nodes are the points in P and that contains an arc (p, q) between
two points p, q ∈ P if and only if |pq| 6 r(p), where |pq| denotes the Euclidean distance
between p and q. Transmission graphs are a popular way to model wireless communication
networks.

The study of transmission graphs leads to various challenging algorithmic problems. In
this paper we are interested in so-called reachability queries: given two query points s, t ∈ P ,
is there a path1 from s to t in Gtr(P )? A closely related query asks for the hop-distance from
s to t, which is the minimum number of arcs on any path from s to t. Reachability queries
can be answered in O(1) time if we precompute for every pair p, q ∈ P whether or not q is
reachable from p and then store that information in a two-dimensional array. This requires
quadratic storage. Our goal is to develop a structure using subquadratic storage that allows
us to quickly answer reachability queries. Such a data structure is called a reachability oracle.
If the data structure can also report the (approximate) hop-distance from s to t then it is
called an (approximate) distance oracle.

1 Whenever we speak about paths in Gtr(P ), we always mean directed paths.
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4:2 A Note on Reachability and Distance Oracles for Transmission Graphs

Note that reachability queries for an undirected graph G can be trivially answered in
O(1) time after computing the connected components of G. For directed graphs, however,
efficient reachability oracles are much harder to design. In fact, for arbitrary directed graphs
one cannot hope for an oracle that uses subquadratic storage. To see this, consider the class
of directed bipartite graphs G = (V ∪W,E) with |V | = |W | = n/2. Then any reachability
oracle must use Ω(n2) bits of storage in the worst case, otherwise two different graphs will
end up with the same encoding and the oracle cannot answer all queries correctly on both
graphs. Surprisingly, even for sparse directed graphs no reachability oracles are known that
use subquadratic storage and have sublinear query time. Directed planar graphs, on the other
hand, admit very efficient reachability oracles: almost three decades of research [4, 5, 7, 8]
eventually resulted in the optimal solution by Holm, Rotenberg and Thorup [13], who
presented an oracle that has O(n) storage and O(1) query time. Moreover, there are various
(approximate) distance oracles for directed planar graphs; see for example [11, 16, 21] and
the references therein.

Planar graphs are sparse, but transmission graphs can be dense. Nevertheless, the
geometric structure of transmission graphs makes it possible to beat the quadratic lower
bound on the amount of storage. Kaplan et al. [15] presented three reachability oracles for
transmission graphs. Their oracles use subquadratic storage when Ψ, the ratio between
the largest and smallest transmission radius, is sufficiently small. The first oracle has
excellent performance—it uses O(n) storage and can answer queries in O(1) time—but it
only works when Ψ <

√
3. The second oracle works for any Ψ, but it uses O(Ψ3n

√
n)

storage and has O(Ψ3√n) query time. The third oracle has a reduced dependency on Ψ—it
has O((log1/3 Ψ) · n5/3 log2/3 n) storage and O((log1/3 Ψ) · n2/3 log2/3 n) query time—but an
increased dependency on n. This third structure is randomized and answers queries correctly
with high probability. Recently, An and Oh [3] presented the first reachability oracle that
has subquadratic storage independent of Ψ. It uses O(n5/3) storage and has O(n2/3) query
time. They also presented an oracle that uses O(n

√
n log Ψ) storage and has O(

√
n log Ψ)

query time.

Our contribution and technique. We present a reachability oracle for transmission graphs
that uses O(n

√
n) storage and has O(

√
n) query time. This significantly improves both

the storage and the query time of the oracle presented by An and Oh [3]. Our oracle
uses a divide-and-conquer approach based on separators. This is a standard approach for
reachability oracles—it goes back to (at least) the work of Arikati et al. [4] and is also used
by Kaplan et al. and by An and Oh. It works as follows.

Consider a directed graph G = (V,E) and let S ⊂ V be a separator for G. Thus V \ S
can be partitioned into two parts A,B of roughly equal size such that there are no arcs
between A and B. The oracle now stores for each pair of nodes (u, v) ∈ V ×S whether u can
reach v in G, and whether v can reach u in G. In addition, there are recursively constructed
oracles for the subgraphs G[A] and G[B] induced by A and B, respectively. Answering a
reachability query with vertices s, t can then be done as follows: we first check if s can reach t
via a node in S, that is, if there is a node v ∈ S such that s can reach v and v can reach t.
Using the precomputed information this takes O(|S|) time. If s can reach t via a node in S,
we are done. Otherwise, s can only reach t if s and t lie in the same part of the partition,
say A, and s can reach t in G[A]. This can be checked recursively.

For graph classes that admit a separator of size s(n), where n := |V |, this approach leads
to an oracle with O(n · s(n)) storage and O(s(n)) query time, assuming s(n) = Ω(nα) for
some α > 0. The problem when using this approach for transmission graphs is that they
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may not have separators of sublinear size. An and Oh [3] therefore apply the following
preprocessing step. Let DP be the set of disks defined by the points in P and their ranges.
Then An and Oh iteratively remove collections of Ω(n1/3) disks that contain a common
point. Note that the disks in such a collection form a clique in the intersection graph defined
by DP . For each collection C, a structure is built to check for two query points s, t ∈ P
if s can reach t via a point corresponding to a disk in C. The set of disks remaining after
this preprocessing step has ply O(n1/3)—any point in the plane is contained in O(n1/3)
of them. This implies that the corresponding transmission graph admits a separator of
size O(n2/3) [18, 19], leading to a reachability oracle with O(n5/3) storage and O(n2/3) query
time.2 Our main insight is that we can use the so-called clique-based separators recently
developed by De Berg et al. [6]. (A clique-based separator for a graph G is a separator that
consists of a small number of cliques, rather than a small number of nodes.) This allows
us to avoid An and Oh’s preprocessing step and integrate the handling of cliques into the
global separator approach, giving an oracle with O(n

√
n) storage and O(

√
n) query time.

We also show how to adapt the oracle such that it can answer approximate hop-distance
queries. In particular, we show how to construct, for a given parameter ε > 0, an approximate
distance oracle that uses O((n/ε)

√
n logn) storage. The oracle can report, for two query

points s, t ∈ P , a value d∗hop(s, t) satisfying dhop(s, t) 6 d∗hop(s, t) < (1+ε)·dhop(s, t)+1, where
dhop(s, t) denotes the hop-distance from s to t in Gtr(P ). The query time is O((

√
n/ε) logn).

Finally, we study so-called continuous reachability queries, where the target point t can
be any point in R2. Such a query asks, for a query pair s, t ∈ P × R2, if there is a point
q ∈ P with |qt| 6 r(q) such that s can reach q. Kaplan et al. [15] presented a data structure
using O(n log Ψ) storage such that any reachability oracle can be extended to continuous
reachability queries3 with an additive overhead of O(logn log Ψ) to the query time. An
and Oh [3] also extended their reachability oracle to continuous reachability queries. The
storage of their oracle remained the same, namely O(n5/3), but the query increased by a
multiplicative polylogarithmic factor to O(n2/3 log2 n). We present a new data structure to
extend any reachability oracle to continuous queries. It uses O(n logn) storage and has an
additive overhead of O(log2 n) to the query time. Thus, unlike the method of Kaplan et al.,
its performance is independent of the ratio Ψ, and unlike the method of An and Oh, we
do not incur a penalty on the query time when combined with our reachability oracle: the
total query time remains O(

√
n) and the total storage remains O(n

√
n). The extension to

continuous queries also applies to approximate distance queries, with an additional additive
error of a single hop.

To construct our oracles, we need an algorithm to construct a clique-based separator for
the intersection graph G×(D) of a set D of n disks in the plane. De Berg et al. [6] present a
brute-force construction algorithm for the case where D is a set of convex fat objects in Rd,
running in O(nd+2) time. This is sufficient for their purposes, since they use the separator
to develop sub-exponential algorithms. For us the separator construction would become the
bottleneck in our preprocessing algorithm. Before presenting our oracles, we therefore first
show how to construct the clique-based separator in O(n logn) time. Since we expect that
clique-based separators will find more applications where the construction time is relevant, we
believe this result is of independent interest. We remark that our algorithm for constructing

2 Actually, this preprocessing needs to be done at each step in the recursive construction of the oracle.
Otherwise the ply would be O(n2/3

0 ) instead of O(n1/3), where n0 is the initial number of points and n
is the number of points in the current recursive call, resulting in an extra logarithmic factor in storage.

3 Kaplan et al. used the term geometric reachability queries.

CGT



4:4 A Note on Reachability and Distance Oracles for Transmission Graphs

the separator depends on an explicit geometric representation of G×(D), that is, we need to
know the objects defining G×(D). This seems unavoidable if we want to obtain an O(n logn)
algorithm, since G×(D) may have Ω(n2) edges.

2 A fast algorithm to construct clique-based separators

Our distance oracle for transmission graphs will be based on the so-called clique-based
separators of De Berg et al. [6]. In this section we present an efficient construction algorithm
for these separators. Although we only need them for disks in the plane, we will describe
the construction algorithm for convex fat objects in Rd, since we expect that an efficient
construction of clique-based separators may find other uses.

Let F be a set of n convex α-fat objects in Rd, where an object o ⊂ Rd is α-fat if there
are concentric balls Bin(o) and Bout(o) with Bin(o) ⊆ o ⊆ Bout(o) and radius(Bin(o)) >
α · radius(Bout(o)). We are interested in sets of objects that are α-fat for some fixed, absolute
constant α > 0. We will therefore drop the parameter α and simply speak of fat objects from
now on.

Let G×(F ) be the intersection graph induced by F , that is, G×(F ) is the undirected
graph whose nodes correspond to the objects in F and that has an edge between two objects
o1, o2 ∈ F if an only if o1 and o2 intersect. A δ-balanced clique-based separator of G×(F )
is a collection S = {C1, . . . , C|S|} of cliques in G×(F ) whose removal partitions G×(F ) into
two parts of size at most δn, with no edges between the parts. Let γ be a function that
assigns a wight to a clique, depending on its size. Then the weight of a separator S is defined
as
∑
C∈S γ(|C|). In other words, the weight of a separator is the sum of the weights of its

constituent cliques.

I Theorem 1 (De Berg et al. [6]). Let d > 2 and ε > 0 be constants and let γ be a weight
function such that γ(t) = O(t1−1/d−ε). Let F be a set of n convex4 fat objects in Rd. Then
the intersection graph G×(F ) has a δ-balanced clique-based separator S of weight O(n1−1/d)
for some fixed constant δ < 1.

De Berg et al. [6] show that when the objects have constant complexity, then the clique-based
separator of Theorem 1 can be constructed in O(nd+2) time, with a balance factor δ =
6d/(6d+1). We show that their algorithm can be implemented to run in O(n logn) time. Our
implementation results in a somewhat larger balance factor, namely 12d/(12d + 1). This is
still a fixed constant smaller than 1, which is all that matters in applications of the separator
theorem.

Step 1: Finding candidate separators. Step 1 starts by finding a smallest k-enclosing
hypercube for F—this is a smallest hypercube that contains at least k objects from F—for
k := n/(6d+1). De Berg et al. do this in a brute-force manner, taking O(nd+2) time. Instead,
we compute a 2-approximation5 of a smallest k∗-enclosing hypercube for k∗ := n/(12d + 1),
as follows.

Consider a smallest k∗-enclosing hypercube H∗ for F . Let q be an arbitrary point in H∗,
and let Hq denote the smallest k∗-enclosing hypercube centered at q. Note that Hq is a
2-approximation of H∗, that is, the edge length of Hq is at most twice the edge length

4 The result also holds for non-convex fat objects if they are similarly sized, but we restrict our attention
to convex fat objects.

5 There is an efficient randomized algorithm to compute a smallest k-enclosing ball for a set of points
in Rd [12], which we can use, but we want to obtain a deterministic algorithm.
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of H∗. Moreover, Hq can trivially be computed in O(n) time, for a given q. We can find
a point q ∈ H∗ as follows. Pick a representative point po ∈ o for every object o ∈ F and
compute a weak ε-net with respect to convex ranges for the set PF := {po : o ∈ F}, where
ε := 1/(12d + 1). (A weak ε-net for convex ranges is a point set Q ⊂ Rd such that any convex
range—and, hence, any hypercube—containing at least εn points from PF also contains
at least one point from Q.) Since ε and d are fixed constants, there is such an ε-net of
size O(1) and it can be constructed6 in O(n) time [17]. Note that Q is guaranteed to contain
a point q ∈ H∗. Thus, for each q ∈ Q, we compute the smallest smallest k∗-enclosing
hypercube Hq, and we report the smallest of these hypercubes. This hypercube, which we
denote by H0, is a 2-approximation a smallest k∗-enclosing hypercube.

The hypercube H0 is used to define a set of potential separators, as explained next.
Assume without loss of generality that the edge length of H0 is 2, so that the edge length
of a smallest k∗-enclosing hypercube is at least 1. Define H(t) to be the copy of H0 that is
scaled by a factor t with respect to the center of H0. Following De Berg et al., we define
Flarge ⊆ F to be the set of objects that intersect the interior or boundary of H(3) and whose
diameter is at least 1/5. These so-called large objects can be stabbed by O(1) points, and
so they define O(1) cliques. These cliques will be put into the separator (plus some more
cliques, as detailed below), so we can focus on F \ Flarge, the set of remaining objects.

Note that any hypercube H(t) induces a separator S(t) in a natural way: put the objects
from F \Flarge that intersect the boundary ∂H(t) into S(t), suitably grouped into cliques, in
addition to the cliques comprising Flarge that we already put into S(t). De Berg et al. [6] prove
that one of the separators S(t) with 1 6 t 6 3 is a separator with the desired properties. To
this end they first prove that any separator S(t) with 1 6 t 6 3 is (6d/(6d + 1))-balanced. In
their proof they work with a smallest n/(6d + 1)-enclosing hypercube H0. The key argument
is that H(3) can be covered by 6d hypercubes of edge length 9/10 in such a way that any
object in F \ Flarge is contained in one of them.7 Since each of the covering hypercubes
contains fewer than n/(6d + 1) objects, this results in a balance factor of 6d/(6d + 1). We can
use exactly the same argument, except that our H0 is only a 2-approximation of a smallest
k∗-enclosing hypercube. Thus we need 12d hypercubes in our cover; see Fig. 1(i). Since
k∗ = n/(12d + 1), this implies that our separators S(t) are (12d/(12d + 1))-balanced.

Step 2: Constructing the cliques and finding a low-weight separator. Step 2 starts by
partitioning the set of objects that may intersect the separators S(t) into cliques. To this end
the objects are partitioned into size classes, and for each8 size class Fs a point set Qs of size
O(n/22sd) is generated that stabs all objects in Fs. Each point q ∈ Qs defines a clique Cq,
which consists of objects from Fs containing q; here an object stabbed by multiple points
can be assigned to an arbitrary one of them. The set Qs consists of grid points of a suitably
defined grid, and they are not only guaranteed to stab the objects o ∈ Fs but they even stab
the inner balls Bin(o). Thus, we can assign each object o ∈ Fs to the point q ∈ Qs closest to

6 Using an ε-net for convex ranges instead of for hypercubes only, is overkill. However, we did not find a
reference explicitly stating that a linear-time deterministic algorithm exists that constructs an ε-net for
hypercubes.

7 De Berg et al. actually cover H(3) with unit hypercubes instead of hypercubes of edge length 9/10,
because they define an object to be large when its diameter is at least 1/4. In degenerate cases, however,
the smallest hypercube containing at least n/(6d + 1) objects can, in fact, contain many more than
n/(6d + 1) objects, and so the unit hypercubes used in the covering may contain more objects as well.
We solve this minor issue by redefining an object to be large when its diameter is 1/5 (instead of 1/4)
so that we can use hypercubes of edge length strictly smaller than 1 in the covering.

8 The smallest size class is handled differently, namely by creating a singleton clique for each object in
this class. For simplicity we do not explicitly mention these singleton cliques from now on.

CGT
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H(3)

2

H0

1
5

1
2

(i) (ii)

H(2.5)

H(1.5)

H0

Figure 1 (i) Hypercube H(3) is partitioned into 12d cells. For each cell, a hypercube of edge
length 9/10 with the same center is created; see the dark grey cell and the light grey hypercube. Any
object of diameter at most 1/5, such as the blue object, intersecting some cell is completely contained
in the corresponding hypercube. (ii) For the clique C shown in blue, we have IC = [1.5, 2.5].

the center of Bin(o). Since Qs forms a grid, this can be done in O(|Fs| logn) time, or even
in O(|Fs|) time if we would allow the floor function. The total time to construct the set C of
all cliques over all size classes Fs is therefore

∑
sO(n/22sd + |Fs| logn), which is O(n logn)

since
∑
s |Fs| 6 n.

De Berg et al. prove that one of the separators S(t), for 1 6 t 6 3 has the desired weight,
that is, that the cliques from C intersected by S(t) have total weight O(n1−1/d). We can find
this separator in O(n logn) time, as follows. For each clique C ∈ C, define

IC := {t : 1 6 t 6 3 and ∂H(t) ∩ U(C) 6= ∅},

where U(C) denote the union of the objects comprising the clique C. In other words,
IC ⊆ [1, 3] contains the values of t such that ∂H(t) intersect at least one object from the
clique C; see Fig. 1(ii). The interval IC can trivially be computed in O(|C|) time, so
computing all intervals takes O(n) time in total. We then find a value t∗ ∈ [1, 3] that
minimizes

∑
C:t∈IC

γ(|C|), which can easily be done in O(n logn) time, and report S(t∗) as
the desired separator.

In conclusion, both steps of the construction algorithm can be implemented to run in
O(n logn) time, leading to the following theorem.

I Theorem 2. Let F be a set of n constant-complexity fat objects in Rd, where d is a fixed
constant. Then we can construct a clique-based separator for G×(F ) with the properties given
in Theorem 1 in O(n logn) time.

3 The oracles

Before we describe our oracles in detail, we need to introduce some notation. Recall that P
is the set of input points, and that r(p) denotes the transmission radius of a point p ∈ P .
We denote the disk of radius r centered at some point z by D(z, r), and for p ∈ P we define
Dp := D(p, r(p)). We call Dp the transmission disk of p. Note that the arc (p, q) is present
in the transmission graph Gtr(P ) if and only if q ∈ Dp. We write p q to indicate that p
can reach q in Gtr(P ). In the following we do not distinguish between the points in P and
the corresponding nodes in Gtr(P ).

The basic reachability oracle. Let L = q1, q2, . . . , q|L| be a path in Gtr(P ). The first
ingredient that we need is an oracle for what we call a via-path query with respect to the
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given path L: given two query points s, t ∈ P , is it possible for s to reach t via a node in
L? In other words, a via-path query asks if there exist a node qi ∈ L such that s qi  t.
We call such an oracle a via-path oracle. As observed by An and Oh [3], there is a simple
via-path oracle with O(1) query time that uses O(n) storage, irrespective of the length of
the path L. The oracle stores for each point p ∈ P , including the points in L, two values:

MinInL[p] := min{i : p qi and qi ∈ L} and MaxOutL[p] := max{i : qi  p and qi ∈ L}.

In other words, MinInL[p] is the minimum9 index of any point qi ∈ L that can be reached
from p, where the points in L are numbered in order along the path. Note that the path
from p to qi∗ , where if i∗ := MinInL[p], may pass through other points from L (which then
must be successors of qi∗ along L). A similar statement holds for the path from qj∗ to p
where j∗ := MaxOutL[p]. Clearly the oracle needs O(n) storage. It is easy to see that a
via-path query with points s, t can be answered by checking if MinInL[s] 6 MaxOutL[t]; see
the paper by An and Oh [3, Lemma 13].

An and Oh show that a via-path oracle can be constructed in O(n) time, provided a
linear-size spanner of Gtr(P ) is available; see the proof of Lemma 14 in their paper. (A
spanner for Gtr(P ) is a subgraph such that for any two points p, q ∈ P we have: p can reach
q in Gtr(P ) if and only if p can reach q in the subgraph.) They also show that a spanner
can be computed in O(n log3 n) time [3, Theorem 5]. Note that the spanner needs to be
computed only once, so its construction does not influence the preprocessing time of our final
oracle as stated later in Theorem 5.

Now let DP := {Dp : p ∈ P} be the set of disks defined by the points in P and their
transmission radii. Let G×(DP ) denote the intersection graph of DP , that is, the undirected
graph with node set DP that contains an edge (Dp, Dq) if and only if Dp ∩Dq 6= ∅. Let C
be a clique in G×(DP ) such that all disks in C can be stabbed by a single point xC . We
call such a clique C, a stabbed clique. A crucial observation by An and Oh [3] is that the
set P (C) ⊆ P of points corresponding to a stabbed clique C can be covered by six paths in
Gtr(P ). More precisely, P (C) can be partitioned into (at most) six subsets P1(C), . . . , P6(C)
with the following property: if we order the points in Pi(C) by decreasing transmission
radius then there is an arc from each point to its direct successor, so the points form a path
in Gtr(P ); see Figure 2. In fact, and this will be relevant later, each point in Pi(C) has an
arc to all its successors in the ordering. We call such a path a transitive path. (An and Oh
use the term chain.)

It is folklore and easy to see that any clique in G×(DP ) can be partitioned into O(1)
stabbed cliques. Indeed, if Dp is the smallest disk in the clique and σ is a square of side
length 4 · radius(Dp), then a sufficiently fine grid in σ will stab all disks in the clique. Thus
we obtain the following lemma.

I Lemma 3. Let C be a clique in G×(DP ) and let P (C) ⊆ P be the points corresponding to
the disks in C. Then we can cover the points in P (C) by O(1) transitive paths in Gtr(P ).

A via-clique oracle, for a given clique C in G×(DP ), is a data structure that can answer
via-clique queries: given two query points s, t, decide if s can reach t in Gtr(P ) via a point
in P (C). It is important to note that the query asks if s can reach t in Gtr(P ), not in G×(DP ).
Lemma 3 implies that we can answer a via-clique query using O(1) via-path queries.

9 We define the minimum over the empty set to be ∞, which means that MinInL[p] =∞ if no qi can be
reached from p. Similarly, the maximum over the empty set is defined to be −∞, so MaxOutL[p] = −∞
if no qi can reach p.

CGT
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(i) (ii)

q1q2

q3
xC

Γ3(xC)

Γ2(xC)

Γ4(xC)

Γ5(xC)

Γ6(xC)

Γ1(xC)

Figure 2 (i) To partition P (C) into P1(C), . . . , P6(C) we partition the plane into six 60-degree
cones Γ1(xC), . . . , Γ6(xC) with apex at xC—we call these the canonical cones of xC—and assign
each point from P (C) to the cone containing it, with ties broken arbitrarily. The set Pi(C) then
contains the points assigned to Γi(xC). In this example the sets P2(C) and P6(C) are empty. (ii) If
we sort the points assigned to a cone by increasing transmission radius, then each point qi must
have an arc to any successor qj in the ordering. The reason is that the angle ∠qixCqj is at most
60 degrees, so |qiqj | 6 max(|qixC |, |qjxC |) 6 max(r(qi), r(qj)) = r(qi).

The following lemma summarizes (and slightly extends, since they only considered stabbed
cliques) the intermediate result from An and Oh on which we build.

I Lemma 4. Let C be a clique in G×(DP ). Then there is a via-clique oracle for C that
uses O(|C|) storage and that can answer via-clique queries in O(1) time. The oracle can
be constructed in O(n) time, provided we have a spanner of the transmission graph Gtr(P )
available.

Proof. Since we can partition C into O(1) stabbed cliques in O(|C|) time, the result follows
from the result by An and Oh [3]. Lemma 14 in their paper gives a bound of O(n5/3) on
the total preprocessing time for all cliques in their construction, but the bound for a single
clique is O(n); see the last two sentences in their proof. J

To obtain a reachability oracle for transmission graphs we combine Lemma 4 with the
machinery of clique-based separators. Recall from the previous section that a δ-balanced
clique-based separator of the intersection graph G×(D) of a set D of n disks, is a set S of
cliques in G×(D) whose removal partitions G×(D) into two parts of size at most δn, for some
fixed constant δ < 1. Note that if we set the weight function γ to be γ(|C|) = 1, then the
weight of a clique-based separator is simply its number of cliques. Theorem 2 thus implies
that we can compute a clique-based separator consisting of O(

√
n) cliques in O(n logn) time.

Clique-based separators provide a simple mechanism to recursively construct an efficient
reachability oracle for transmission graphs, as follows.

Construct a clique-based separator S consisting of (
√
n) cliques for the intersection

graph G×(DP ), where DP is the set of disks defined by the points in P and their
transmission radii.

For each clique C ∈ S, construct a via-clique oracle using Lemma 4.
Let PA, PB ⊂ P be the two subsets of points corresponding to the partition of
G×(DP ) induced by S. Recursively construct reachability oracles for PA and PB .

The recursion ends when |P | 6 1; we then simply store the point in P (if any).

Answering a reachability query with query points s and t is done as follows. We first
perform a via-clique query with s and t for each clique C ∈ S. If any of the queries returns
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yes then s can reach t. If all queries return no, and s and t belong to different parts of
the partition, then s cannot reach t. If neither of these two cases apply, then we recursively
check if s can reach t in Gtr(PA) or Gtr(PB), depending on whether s, t ∈ PA or s, t ∈ PB.
This leads to the following theorem.

I Theorem 5. Let P be a set of n points in R2. Then we can answer reachability queries
on P in O(

√
n) time with an oracle using O(n

√
n) storage, which can be constructed in

O(n
√
n) time.

Proof. Observe that a separator in G×(DP ) is also a separator in Gtr(P ). In other words,
if PA, PB are the two subsets of P corresponding to the parts in the partition of G×(DP )
induced by S, then there are no arcs between the points in PA and those in PB . This implies
that queries are answered correctly.

The total storage for the via-clique oracles of the cliques C ∈ S is O(n
√
n). Hence, the

storage M(n) of our oracle satisfies the recurrence M(n) = O(n
√
n)+M(n1)+M(n2), where

n1, n2 6 δn for some constant δ < 1 and n1 + n2 6 n. It follows that M(n) = O(n
√
n). The

query time Q(n) satisfies Q(n) = O(
√
n) +Q(n1) where n1 6 δn, and so Q(n) = O(

√
n).

It remains to discuss the preprocessing time. By Lemma 4 the time to construct a
via-clique oracles is O(n), after O(n log3 n) preprocessing to construct a spanner of Gtr(P ),
which only needs to be done once. Hence, the total time to construct a via-clique oracle for
each of the O(

√
n) cliques is O(n

√
n). Moreover, by Theorem 2 the clique-based separator can

be constructed in O(n logn) time. Thus the preprocessing time satisfies the same recurrence
as the amount of storage, which implies that the total construction time is O(n

√
n). J

An approximate distance oracle. We now extend our reachability oracle to an approximate
distance oracle. Thus the oracle must be able to approximate the hop distance10 dhop(s, t)
for two query points s, t ∈ P .

To answer approximate distance queries we need to extend the via-path oracle so that, for
a given transitive path L and query points s, t ∈ P , it can approximate dL(s, t), the length
of the shortest path from s to t via a point in L. The via-path oracle we presented above is
not suitable for that: it only records the first point on L that can be reached from s and the
last point from which we reach reach t, and going via these points may take many more hops
than a shortest path via L would. To overcome this problem, we will store the first point
on L that can be reached from s (and the last point that can reach t) with a path of a given
length. To avoid increasing the storage too much, we will not do this for all possible lengths,
but only for logarithmically many lengths. More precisely, our via-path oracle stores, for
all p ∈ P and j ∈ {−1, . . . , dlog1+ε ne}, the values

MinInL[p, j] := min{i : dhop(p, qi) 6 (1 + ε)j and qi ∈ L}

and

MaxOutL[p, j] := max{i : dhop(qi, j) 6 (1 + ε)j and qi ∈ L}.

Here we include j = −1, since for p ∈ L there is a path of zero hops to (resp. from) L, namely
to (resp. from) p itself. The next lemma shows that we can get a (1 + ε)-approximation of
dL(s, t) using the arrays MinInL and MaxOutL, up to an additional additive error of a single
hop.

10We define dhop(s, t) =∞ if s cannot reach t; in this case the oracle should return ∞.
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I Lemma 6. Let d∗L(s, t) := min{(1 + ε)j + (1 + ε)k : MinInL[s, j] 6 MaxOutL[t, k]}. If
dL(s, t) =∞ then d∗L(s, t) =∞, and otherwise dL(s, t) 6 d∗L(s, t) < (1 + ε) · dL(s, t) + 1.

Proof. First note that for any pair j, k with MinInL[s, j] 6 MaxOutL[t, k], there is an arc
from qa to qb for a := MinInL[s, j] and b := MaxOutL[t, k]. Hence,

if MinInL[s, j] 6 MaxOutL[t, k] then dL(s, t) 6 (1 + ε)j + (1 + ε)k + 1. (1)

To prove the first part of the lemma, suppose dL(s, t) = ∞. Then we must also have
d∗L(s, t) = ∞, as claimed. Indeed, if d∗L(s, t) < ∞ there are j, k with MinInL[s, j] 6
MaxOutL[t, k] which, together with (1), would contradict dL(s, t) =∞.

To prove the second part of the lemma, suppose dL(s, t) 6=∞. Then (1) and the definition
of d∗L(s, t) immediately imply that dL(s, t) 6 d∗L(s, t). To prove d∗L(s, t) 6 (1 +ε) ·dL(s, t) + 1,
let qi∗ ∈ L be a point such that dL(s, t) = dhop(s, qi∗) + dhop(qi∗ , t). Define

j∗ := min
{
j : −1 6 j 6 dlog1+ε ne and dhop(s, qi∗) 6 (1 + ε)j

}
and

k∗ := min
{
k : −1 6 k 6 dlog1+ε ne and dhop(s, qi∗) 6 (1 + ε)k

}
.

Then

MinInL[s, j∗] 6 i∗ 6 MaxOutL[t, k∗]

and so d∗L(s, t) 6 (1 + ε)j∗ + (1 + ε)k∗ + 1 by (1). Moreover,

dL(s, t) = dhop(s, qi∗) + dhop(qi∗ , t) > (1 + ε)j
∗−1 + (1 + ε)k

∗−1.

Hence,

d∗L(s, t) 6 (1 + ε)j
∗

+ (1 + ε)k
∗

+ 1 < (1 + ε) · dL(s, t) + 1,

thus finishing the proof. J

The following lemma summarizes the performance of our via-path approximate distance
oracle.

I Lemma 7. Let Gtr(P ) be a transmission graph on n points, and let L be transitive path in
Gtr(P ). Then there is an oracle that uses O((1/ε) · n logn) storage such that, for two query
points s, t ∈ P we can compute the value d∗L(s, t) from Lemma 6 in O((1/ε) logn) time.

Proof. The storage needed for the arrays MinIn and MaxOut is O(n log1+ε n). Since
log1+ε n = (logn)/ log(1 + ε) = O((1/ε) logn) this proves the bound on the amount of
storage of our oracles.

To compute d∗L(s, t) when answering a query, we note that the values MinIn[s, j] are non-
increasing as j increases, and the values MaxOut[t, k] are non-decreasing as k increases. Hence,
we can find d∗L(s, t) = min{(1+ε)j+(1+ε)k : MinInL[s, j] 6 MaxOutL[t, k]} by scanning the
rows MinIn[s, ·] and MaxOut[t, ·], as follows. First, for j = dlog1+ε ne we find the smallest k
such that MinInL[s, j] 6 MaxOutL[t, k]. If no such k exists then d∗L(s, t) =∞ and we are done.
Otherwise we decrease j by 1 and increase k until we again have MinInL[s, j] 6 MaxOutL[t, k].
We continue scanning MinIn[s, ·] and MaxOut[t, ·] in opposite directions, until we have found
for each j the smallest k such that MinInL[s, j] 6 MaxOutL[t, k]. One of the pairs j, k thus
found must be the pair defining d∗L(s, t). Thus the query time is linear in the length of the
rows MinIn[s, ·] and MaxOut[t, ·], which is O(log1+ε n) = O((1/ε) logn). J
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The via-path oracle for approximate distance queries can be extended to a via-clique oracle,
in exactly the same way as was done for reachability queries: cover each clique by O(1)
stabbed cliques, cover each stabbed clique by at most six (transitive) paths, and construct
a via-path oracle for each of them. These via-clique oracles can then be plugged into the
separator approach, again exactly as before.

To answer a query with query points s, t on our complete oracle, we first compute an
approximate hop-distance from s to t via one of the cliques in the clique-based separator.
If s and t are in the same part of the partition, we then also recursively approximate the
hop-distance within that part. Finally, we return the minimum of the distances found.

The analysis of the amount of storage and query time is as before; the only difference is
that the via-clique oracle has an extra factor O((1/ε) logn) in the storage and query time,
which carries over to the final bounds. Unfortunately, the preprocessing time does not carry
over. The reason is that we cannot afford to work with a spanner. It is possible to do a
BFS on Gtr(P ) efficiently, as demonstrated by Kaplan et al. [14] and by An and Oh [3],
but it is not quite clear how to integrate this into the preprocessing algorithm. Moreover,
we also need to do a BFS on the “reversed” transmission graph, which makes things even
more difficult. We therefore revert to simply solving the All-Pairs Shortest Path problem
(APSP) in a preprocessing step, thus giving all pairwise distances. Once these distances
are available, the construction of the oracle can be done within the same time bounds as
before. Solving APSP in directed unweighted graphs can be done in O(n2.5302) time [10].
We can improve the preprocessing time by observing that, since we are approximating the
hop-distance anyway, we may as well solve APSP approximately. Indeed, if we work with
(1 + ε)-approximations of the distances, then the total (multiplicative) approximation factor
of our oracle is bounded by (1 + ε)2 < 1 + 3ε. Hence, by working with parameter ε′ := ε/3,
we can get a (1 + ε′)-approximation, for any ε′ > 0. Galil and Margalit [9] (see also the paper
by Zwick [22]) have shown that one can compute a (1 + ε)-approximation of all pairwise
distances in Õ(nω/ε) time,11 where ω < 2.373 is the matrix-multiplication exponent [2].

Putting everything together, we obtain the following theorem.

I Theorem 8. Let P be a set of n points in R2. Then there is an oracle for approximate
distance queries that uses O((n/ε)

√
n logn) storage and that, given two query points s, t ∈ P

can determine if s can reach t. If so, it can report a value d∗L(s, t) with dL(s, t) 6 d∗L(s, t) 6
(1 + ε) · dL(s, t) + 1 in O((

√
n/ε) logn) time. The oracle can be constructed in Õ(nω/ε) time,

where ω < 2.373 is the matrix-multiplication exponent.

Extension to continuous reachability queries. In a continuous reachability query, we are
given a query pair s, t ∈ P × R2 and we wish to decide if s can reach t, that is, we wish to
decide if there is point q ∈ P such that s q and |qt| 6 r(q). We define the hop-distance
from s to t, denoted by dhop(s, t), as

dhop(s, t) = min{dhop(s, q) + 1 : q ∈ P and |qt| 6 r(q)}.

Next we present a data structure that, given a query target point t ∈ R2, determines a set
Q(t) of at most six points that can serve as the last point on a path from any source point s
to t. To this end, let Γ1(t), . . . ,Γ6(t) be the six canonical cones of t. (See Fig. 2(i) for an
illustration of the concept of canonical cones.) For each cone Γi(t), let Qi(t) ⊆ P be the set

11The notation Õ hides O(polylog n) factors.
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Figure 3 (i) Illustration of the fact that p ∈ Qi(t) if and only if t ∈ D
(i)
p . (ii) The set D∗ and the

corresponding search structure.

of points in Γi(t) whose transmission disk contains t. (If a point p with t ∈ Dp lies on the
boundary between two cones, we assign it to one of them arbitrarily.) For Qi(t) 6= ∅, let
qi(t) be a point in Qi(t) of minimum radius. Define Q(t) to be set of at most six points qi(t)
selected in this manner.

IObservation 9. Let s ∈ P be a point that can reach t and let d∗(s, t) := minq∈Q(t) dhop(s, q) + 1.
Then dhop(s, t) 6 d∗(s, t) 6 dhop(s, t) + 1.

Proof. Suppose s can reach t, and let q∗ ∈ P be the point immediately preceding t on a
shortest path from s to t. Let i be such that q∗ ∈ Qi(t), and let qi(t) ∈ Qi(t) be the minimum-
radius point that was put into Q(t). Then q∗ and qi(t) lie in the same 60-degree cone Γi(t)
and r(qi(t)) 6 r(q∗). Moreover, |q∗t| 6 r(q∗) and |qi(t)t| 6 r(qi(t)). Hence, (q∗, qi(t)) is
an arc in Gtr(P )—this was also the key property underlying the via-path oracle—and so
dhop(s, qi(t)) 6 dhop(s, q∗) + 1. This implies

d∗(s, t) 6 dhop(s, qi(t)) + 1 6 dhop(s, q∗) + 2 = dhop(s, t) + 1.

On the other hand, any point q ∈ Q(t) can reach t with one hop, so

dhop(s, t) 6 min
q∈Q(t)

dhop(s, q) + 1 = d∗(s, t).

J

We now describe a data structure that, given a query point t, computes the point qi(t)
mentioned in Observation 9 (if it exists), for a fixed index i. We will construct such a data
structure for each 1 6 i 6 6, and by querying each of these six structures we can compute
the set Q(t).

Consider a fixed index i, that is, consider the canonical cone of a fixed orientation. The
structure for this fixed index i is defined as follows. For a point p ∈ P , let Γi(p) be the
canonical cone opposite Γi(p)—for instance, Γ1(p) = Γ4(p)—and define D(i)

p := Dp ∩ Γi(p).
Then p ∈ Qi(t) if and only if t ∈ D(i)

p ; see Fig. 3(i). Thus we need a data structure on the
set D∗ := {D(i)

p : p ∈ P} that, given a query point t ∈ R2, can quickly find a point p ∈ P
with minimum transmission radius such that t ∈ D(i)

p . To this end we construct a balanced
binary tree Ti, as follows; see Fig. 3(ii).

The leaves of Ti store the points p ∈ P in left-to-right order according to their transmission
radii. For example, the leftmost leaf stores a point p ∈ P of minimum transmission radius
and the rightmost leaf stores a point p ∈ P of maximum transmission radius.
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Let P (v) denote the set of points stored in the subtree rooted at v. Then v stores the
union U(v) :=

⋃
p∈P (v) D

(i)
p , preprocessed such that for a query point t ∈ R2 we can decide

if t ∈ U(v) in O(log |U(v)|) time. Using a standard point-location data structure [20] this
associated structure needs (|U(v)|) storage.

A query with point t ∈ R2 to find qi(t) is answered as follows. If t 6∈ U(root(Ti)) then
Qi(t) = ∅ and we are done. Otherwise we descend in Ti, proceeding to the left child vleft of
the current node v if t ∈ U(vleft), and proceeding to the right child of v otherwise. We then
report the point stored in the leaf where the search ends. It is easy to see that this correctly
answers the query. This leads to the following theorem.

I Theorem 10. Let P be a set of n points in R2. There is a data structure of size O(n logn)
that, for any query point t ∈ R2, can find in O(log2 n) time a set Q(t) ⊂ P of at most six points
with the following property: for any point s ∈ P we have dhop(s, t) 6 d∗(s, t) 6 dhop(s, t) + 1,
where d∗(s, t) := minq∈Q(t) dhop(s, q) + 1. The data structure can be built in O(n log2 n) time.

Proof. Observation 9 states that the set Q(t) defined earlier has the desired properties. It
follows from the discussion above that we can find Q(t) by querying the six structures Ti
as described above. It remains to argue that each Ti uses O(n logn) storage, has O(log2 n)
query time, and can be built in O(n log2 n) time.

The total amount of storage is
∑
v∈Ti

O(u(v)), where u(v) is the complexity of the
union U(v). Recall that each D(i)

p is a 60-degree sector of a disk, and that all these sectors
have exactly the same orientation. Hence, U(v) is the union of a set of homothets—they are
scaled and translated copies of each other—and so their union complexity is linear [1]. Thus
u(v) = O(|P (v)|), from which it follows by standard arguments that the total amount of
storage is O(n logn). The query time is O(log2 n), since we spend O(logn) per node as we
descend Ti and the depth of Ti is O(logn).

The tree Ti can be built in a bottom-up manner. Thus at each node v of Ti we construct
U(v) by taking the union of U(vleft) and U(vright), where vleft and vright are the left and right
child of v. This can be done in O ((u(vleft) + u(vright)) log(u(vleft) + u(vright))) time with
a simple plane-sweep algorithm. After constructing U(v), we process it for point location
in O(u(v) log u(v)) time. Thus constructing the tree Ti takes

∑
v∈Ti

O(u(v) log u(v)) =
O(n log2 n) time. Since we have six such trees, the total preprocessing tims is O(n log2 n). J

I Corollary 11. Let P be a set of n points in R2, each with an associated transmission radius,
and let Gtr(P ) be the corresponding the transmission graph.
(i) There is an oracle for continuous reachability queries in Gtr(P ) that has O(

√
n) query

time, uses O(n
√
n) storage, and can be built in O(n

√
n) time.

(ii) There is an oracle for continuous approximate-distance queries in Gtr(P ) that uses
O((n/ε)

√
n logn) storage and that, given query points s ∈ P and t ∈ R2 can report a

value d∗L(s, t) with dL(s, t) 6 d∗L(s, t) 6 (1+ε)·dL(s, t)+2 in O((
√
n/ε) logn) time. The

oracle can be constructed in Õ(nω/ε) time, where ω < 2.373 is the matrix-multiplication
exponent.

4 Concluding remarks

We presented oracles for reachability and approximate distance queries in transmission
graphs, whose performance does not depend on Ψ, the ratio between the largest and smallest
transmission radius. The bounds we obtain are a significantly improvement over the previously
best known bounds by An and Oh [3]. However, our bounds for reachability queries are
still quite far from what can be achieved when Ψ <

√
3: we obtain O(

√
n) query time with
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O(n
√
n) storage, while for Ψ <

√
3 Kaplan et al. [14] obtain O(1) query time using O(n)

storage. They do this by reducing the problem to one on planar graphs. For Ψ >
√

3
such a reduction seems quite hard, if not impossible, and to make progress a much deeper
understanding of the structure of transmission graphs may be needed. A first goal could be
to improve on our bounds for small values of Ψ, say Ψ = 2. Lower bounds for unbounded Ψ
would also be quite interesting.
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