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Abstract
Given a set of terminals, the network with the shortest total length connecting all terminals is a
Steiner tree. At the other extreme, with a sufficient total length budget, every terminal can be
connected to every other terminal via a straight line, yielding a complete graph over all terminals
that connects every terminal pair with a shortest path. In this work, we study a generalization of
Steiner trees, asking what happens between these two extremes. For a given total length budget,
we seek a network structure that minimizes the sum of the weighted distances between pairs of
terminals. Focusing on three terminals with equal pairwise path weights, we characterize the full
evolution pathway between the Steiner tree and the complete graph, which contains interesting
intermediate structures. Our initial study of such structures, which we call budgeted Steiner
networks, opens up many interesting directions for further investigation.
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1 Introduction

Consider a scenario in which three or more terminals (e.g., nodes A, B, and C in Fig. 1) are
to be connected using a (graph) network, the total length of which is bounded.
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Figure 1 Evolution of a budgeted Steiner network over three terminals as the budget increases.
(a) Three terminals, A, B, and C. (b) The minimal non-trivial network that connects two terminals.
(c) The minimal network connecting all terminals, which is a Steiner tree. (d) With a sufficient
budget, the network is a complete graph. The question is, what happens between (c) and (d)?

At one extreme, the minimum length budget required to connect all terminals corresponds
to the total length of the edges of a connected graph/network over the terminals (Fig. 1(c)).
This network must assume a tree topology, as characterized in the study of the well-known
Steiner tree problem (STP) [10, 19]. At the other extreme, when there is no limit on the
budget, the best network structure is clearly a complete graph over the terminals, where
every pair of terminals is connected through a straight edge. Such a network ensures the
shortest possible travel distance between any pair of terminals. What if, however, the budget
falls between the two extremes?

To address the question, we propose the budgeted Steiner network (BSN) problem/model.
As a natural generalization of STP, BSN seeks the best network structure for a given length
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4:2 An Initial Study of Budgeted Steiner Networks

budget to connect three or more terminals, which reside in Rd for some d ≥ 1, such that the
sum of the weighted distances between terminals pairs is minimized. In this work, we focus
on the three-terminal case with d = 2 (for three terminals, d = 2 is the same as d ≥ 2).

The generalization immediately leads to rich and interesting structures, even when
only three terminals are involved. As the budget increases, the network structure changes
continuously between a Steiner tree and a complete graph over the terminals, a few snapshots
of which are illustrated in Fig. 2.
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Figure 2 A spectrum of optimal Euclidean BSN structures (solid lines) for three terminals in a
typical configuration, as the total length budget increases.

As a summary of the full evolution pathway, if all internal angles of △ABC are smaller
than 2π/3, the Steiner tree over terminals A, B, and C has a Steiner point that is internal to
the triangle (e.g., the green dot in Fig. 2). In this case, for a generic △ABC (that is, △ABC

is not an isosceles triangle), as the budget increases past the length of the Steiner tree, an
equilateral triangle △A′B′C ′ will “grow” out of the Steiner point (Fig. 2(b)) and continues
to expand until one vertex of △A′B′C ′ meets one of the terminals say A. Going past this
point, △A′B′C ′ continues to expand as an isosceles triangle with A′ = A fixed (Fig. 2(c))
as the budget continues to increase until another vertex meets B or C, say B. △A′B′C ′

then continues to expand with A′ = A and B′ = B fixed, and C ′ moving toward C, until
it fully coincides with △ABC. If △ABC has one angle equal to or larger than 2π/3, the
evolution pathway is similar but shortened; the corresponding BSN does not have an initial
phase containing an equilateral triangle.

The main contribution of this work is the characterization of the precise evolution pathway
of a BSN as the budget increases, for three arbitrarily located terminals. The analysis also
implies an efficient algorithm for computing the optimal BSN structure for any given budget.

2 Related work

BSN problems are closely related to STPs [8, 10, 19], which is a broad term covering a class
of network optimization problems. An STP seeks a minimal network that connects a set of
terminals (in Euclidean space or on graphs that are possibly edge/vertex weighted). There are
four main cases: Euclidean, rectilinear, discrete/graph-theoretic [5,14], and phylogenetic [10].
Considering the paper’s scope, we provide a brief literature review of Euclidean STPs.

The Euclidean STP asks the following question: given n terminals in 2D or 3D, find a
network that connects all n points with the minimum total length (the discussion from now
on will be limited to the 2D case). Obviously, the resulting network is a tree and may only
have straight-line segments; it may also require additional intermediary nodes to be added.
These added nodes are called Steiner points. The study of Euclidean STP bears with it a
long history; the initial mathematical study of the subject may be traced back to at least
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1811 [2]. According to [15], key properties of Euclidean STP have been established in (as
early as) the 1930s by Jarník and Kössler [11]. An interconnecting network T is called a
Steiner tree if it satisfies the following conditions [10]:

(a) T is a tree,
(b) Any two edges of T meet at an angle of at least 2π/3, and
(c) Any Steiner point cannot be of degree 1 or 2.

These conditions turn out to be also relevant in our study of the BSN problem. The
solution to an Euclidean STP must be a Steiner tree. Note that (b) implies a node of the
network has a maximum degree of 3. Together, (b) and (c) imply that three edges must
meet at a Steiner point forming angles of 2π/3 in a pairwise manner (see Fig. 1). Because
Euclidean Steiner trees assume minimal energy configurations, they also appear in nature.
Indeed, it is possible to employ related natural phenomena (e.g., using rubber bands and
soap film) to “compute” Euclidean Steiner trees [4, 7, 17].

Our study, which focuses on the case of three terminals with equal path weights bears
similarity with a recent study [3] which examines a related problem characterizing the
minimum dilation spanners on three terminals for a given budget. Whereas there exists a
mild degree of similarity, we note that we independently developed our results, which provide
an exact analysis of the full evolution pathway between the Steiner tree and the complete
graph. On the other hand, the analytical result of [3] is mostly limited to the initial stage of
the evolution.

Computing an Euclidean STP is NP-hard, although there is a polynomial time approxima-
tion scheme (PTAS) for solving it [1]. On the more practical side, fast methods including the
GeoSteiner algorithm [18,20] have been developed building on the Melzak construction [16].
An open-source implementation of the GeoSteiner algorithm is maintained [13].

It is worth pointing out that the problem of computing a (tree) network that minimizes
the sum of the shortest paths between every two nodes in the network with respect to
some given budget is well-known [9], receiving widespread attention even in chemistry as
Minimum Wiener Index Network [6]. Such problems are also NP-hard in general [12] with
polynomial-time approximation schemes for some [21].

3 Preliminaries

Let there be n ≥ 3 unique terminals N = {v1, . . . , vn}, in a d-dimensional unit cube, d > 0.
For each pair of terminals vi and vj , 1 ≤ i, j ≤ n, i ̸= j, let wij ∈ (0, 1] denote the (relative)
weight or importance of the route connecting vi to vj . In practice, wij may model the
expected traffic flow from vi to vj , for example. In an Euclidean budgeted Steiner network
(BSN) problem, straight line segments are to be added for connecting the n terminals so
that some or all of the terminals are connected. Similar to Steiner trees, intermediate nodes
other than v1, . . . , vn, which we call anchors, may be added. The terminals, anchors, and
the straight line segments then form a graph containing one or more connected components.
Under the constraint that the total length of the line segments does not exceed a budget L,
the BSN problem seeks a network structure that minimizes the objective

J(L) =
∑︂

1≤i,j≤n

wijdij , (1)

in which dij denotes the shortest distance between vi and vj on the network. If no path
exists between vi and vj , let dij be some very large number.

CGT



4:4 An Initial Study of Budgeted Steiner Networks

In the current work, we examine the case of n = 3 and wij = 1 for all 1 ≤ i, j ≤ 3, i ̸= j,
i.e., paths between pairs of terminals are equally important. Let the three terminals be A, B,
and C, we are looking for a BSN minimizing the sum dAB + dBC + dAC subject to the budget
L. For a fixed L, let N(L) denote the optimal BSN structure. Let LST be the budget L when
N(L) is a Steiner tree. For convenience, let NST := N(LST).

4 Anchor structures and Steiner triangles

4.1 Basic properties of anchors
First, we note each anchor must have degree three.

▶ Lemma 1 (Degree of Anchors). For three terminals, any anchor must have degree three.

Proof. Each anchor must connect at least three line segments; otherwise, the anchor point
and the involved line segments only cause increases to the objective dAB + dBC + dAC . An
anchor’s degree also cannot be four or larger when there are only three terminals, because
each outgoing edge from an anchor must be on a path to a unique terminal, if we are to
minimize Eq. (1). But there are only three terminals. ◀

We analyze what happens when L = LST +ε for small ε > 0, for the case where the Steiner
point lies inside △ABC, which happens when all angles of △ABC are smaller than 2π/3.
Due to continuity, the resulting structure that minimizes Eq. (1) must be a perturbation
of NST (e.g., Fig. 1(b)). This means that N(LST + ε) must start “growing” at the Steiner
point. We want to understand how N(LST + ε) evolves for small ε. This raises the following
questions: (1) how many line segments are in N(L = LST + ε) and (2) how do they come
together? We note that N(LST + ε) must contain more than three straight line segments.
Otherwise, N(LST + ε) will still be a tree but with dAB + dBC + dAC = 2(LST + ε) > 2LST,
i.e., J(L) > J(LST) = 2LST.

To answer above-mentioned questions, we start with establishing essential properties of
anchors, concerning their locations, degrees, and numbers. It is clear that anchors must
always fall within △ABC; otherwise, an outside anchor (on the convex hull of all terminals
and anchors) can be “retracted” toward the boundary of △ABC to reduce both the budget
and the objective function value. In fact, anchors cannot reside on the boundary of △ABC,
as shown in the following lemma.

▶ Lemma 2 (Interiority of Anchors). For terminals A, B, and C, any anchor must fall in the
interior of △ABC, excluding its perimeter.

Proof. Consider the setting illustrated in Fig. 3 where only a portion of △ABC is drawn.
Suppose that D is the only anchor on AC and the horizontal line segment passing through
D and D′ is part of an optimal network structure. For the setup, DD′ must be part of the
shortest path on the optimal network that connects A to B as well as C to B; the entire AC

must also be part of the network that connects A and C.
We claim that such a configuration cannot be optimal. To see this, retract D along DD′ by

some small distance of |DD′′|. This reduces the budget by ∆L = |DD′′|+(|AC|−|AD′′|−|CD′′|).
At the same time, the cost reduction is ∆J = 2|DD′′|+(|AC|−|AD′′|−|CD′′|).

Let E ∈ AC be a point such that D′′E ⊥ AC. It is straightforward to derive that
|ED′′|≫ |CD′′|−|CE| and |ED′′|≫ |AD′′|−|AE| for sufficiently small |ED′′|> 0. Therefore,
|DD′′|≥ |ED′′|> (|AD′′|+|CD′′|−|AC|). This means that for small |DD′′|, both ∆L and
∆J are positive, i.e., we can reduce budget and at the same time reduce the cost by retracting
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Figure 3 Moving C′ along C′C for a small amount.

D along DD′ to D′′. This means that D cannot be an anchor. If D is not the only anchor
on AC, the same proof works assuming D is the lowest anchor on AC. ◀

Building on Lemmas 1 and 2, we show that there can be at most three anchors for three
terminals.

▶ Lemma 3 (Number of Anchors in N(LST + ε)). When all angles of △ABC are below 2π/3,
for small ε > 0, N(LST + ε) contains three anchors that form a triangle inside △ABC.

Proof. By Lemma 1, all anchors have degree three. If there is only a single anchor that is
not the Steiner point, then N(LST + ε) still has a tree structure. This tree is different from
NST which is minimal, so the new tree must have a larger objective function value which
cannot be optimal.

If there are two anchors, each with degree three, then both of them cannot be connected
to all of A, B, and C; there must be exactly five line segments in N(LST + ε), one of which
connects the two anchors. This leaves four line segments connected to the three terminals,
which means that two of these line segments must reach the same terminal. This will induce
a total budget that cannot be an arbitrarily small amount above LST when the Steiner point
is inside △ABC. That is, this is impossible with a budget LST + ε for small ε > 0.

There cannot be more than three anchors when there are only three terminals. To
establish this, we note that a shortest path between any two terminals, when there are three
terminals in total, can make at most two “turns” due to path sharing. To see this, consider
the shortest path PAB between terminals A and B. PAB may bend at most two times, once
to share with a path from A to C and once to share with a path from B to C. If PAB bends
once, say at an anchor A′, then both AA′ or A′B must be on a shortest path to B and we
must have a tree. This is not possible under the assumption that ε is small, so there can only
be one edge coming out of a terminal. Therefore, each shortest path between two terminals
must bend exactly twice at two anchors. The three shortest paths then have a total of six
anchors. Because each anchor is shared by two shortest paths, there can only be three unique
anchors that form a triangle. ◀

4.2 Steiner triangle for three anchors
Having shown that there are three anchors, let the anchor closest to A, B and C be A′, B′,
and C ′, respectively. This implies that N(LST + ε) contains six line segments AA′, BB′, CC ′,
A′B′, A′C ′, and B′C ′. We call △A′B′C ′ that “grows” out of the Steiner point a Steiner
triangle. Next, we establish that △A′B′C ′ is an equilateral triangle, starting with showing
that its three internal angles are bisected by AA′, BB′ and CC ′. The objective Eq. (1),
dAB + dBC + dAC , in the current setting, translates to

J(LST + ε) = 2|AA′|+2|BB′|+2|CC ′|+|A′B′|+|A′C ′|+|B′C ′|. (2)

CGT



4:6 An Initial Study of Budgeted Steiner Networks

▶ Lemma 4 (Bisector of Steiner triangle). For terminals A, B, and C with a Steiner point,
let N(LST + ε) be composed of the Steiner triangle △A′B′C ′ and segments AA′, BB′ and
CC ′. Then an angle of △A′B′C ′ is bisected by the line passing the corresponding anchor
and the terminal the anchor is connected to.

Proof. Assume that for a given budget L = LST + ε, the optimal network N(LST + ε) has
corresponding optimal objective J(LST + ε) as given in Eq. (2). We show that CC ′ is a
bisector of ̸ A′C ′B′ by analyzing the local changes to L and J(LST + ε) if we perturb C ′.

C

A′

B′

C′
D

E

F

Figure 4 Perturbing C′ in an assumed optimal configuration for the three-terminal Euclidean
BSN problem. The figure zooms in around C′ without showing A and B. The drawing intentionally
avoids assuming that △A′B′C′ is an equilateral triangle.

Referring to Fig. 4, let D be a point on the extension of
−−→
CC ′. A point E is introduced

that shifts C ′ up vertically (i.e., C ′E ⊥ C ′C) by the amount |C ′E|, as a small perturbation
to C ′. Now draw a line EF such that EF ⊥ A′C ′ with F ∈ A′C ′. Because |C ′E| is small,
|A′F |≈ |A′E| (this is a second order approximation). As C ′ is moved to E, the length
change of A′C ′ is given by |A′E|−|A′C ′|, which is approximately |A′F |−|A′C ′|= −|FC ′|=
−|C ′E|cos ̸ A′C ′E = −|C ′E|sin ̸ A′C ′D.

Following similar analysis, the length change of B′C ′, |B′E|−|B′C ′|, is approximately
|C ′E|sin ̸ B′C ′D. Because C ′E ⊥ C ′C and |C ′E| is small, |CC ′|≈ |CE| (also a second
order approximation). Relating the length changes due to moving C ′ up to the change of
the budget L, the net change to L is |C ′E|(sin ̸ B′C ′D − sin ̸ A′C ′D) (i.e., B′C ′ becomes
longer and A′C ′ becomes shorter with CC ′ unchanged, as a second order approximation).
The change to the objective J(LST + ε) is the same since CC ′ is unaffected by C ′E.

Because the changes to L and J(LST +ε) are exactly the same, if ̸ A′C ′D ̸= ̸ B′C ′D, then
either

−−→
C ′E or a perturbation in the direction of

−−→
EC ′ will cause both |A′C ′|+|B′C ′|+|C ′C| and

|A′C ′|+|B′C ′|+2|C ′C| to decrease, which means that L and J(LST +ε) can be simultaneously
reduced. This contradicts the assumption that L is the smallest budget for which the
current objective J(LST + ε) is possible. Since this cannot happen, it must be the case
that ̸ A′C ′D = ̸ B′C ′D in an optimal network configuration. That is, CC ′ is a bisector of
̸ A′C ′B′. By symmetry, BB′ is a bisector of ̸ A′B′C ′ and AA′ is a bisector of ̸ B′A′C ′. ◀

Before moving on to showing that △A′B′C ′ is equilateral, we note that Lemma 4 does
not depend on ε being small. Moreover, the result continues to hold if there are one or two
anchors, which can be readily verified.
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▶ Lemma 5 (Anchor Bisector). For terminals A, B, and C, suppose C ′ is an internal anchor
connected to C in an optimal network structure N(L). Then CC ′ bisects the angle formed by
the other two outgoing edges from C ′.

We now prove a key structural property of BSN for three terminals involving three anchors.

▶ Theorem 6 (Steiner Triangle for Three Anchors). For terminals A, B, and C with a Steiner
point, assume that N(LST + ε) is composed of the Steiner triangle △A′B′C ′ and segments
AA′, BB′ and CC ′. Then △A′B′C ′ is equilateral with its center being the Steiner point of
the terminals. The center of △A′B′C ′ is the intersection point of AA′, BB′ and CC ′.

Proof. Again assuming an optimal solution, extend line segments AA′, BB′, and CC ′ so
that they intersect (see Fig. 5).

A

B

C

A′

B′

C′

O′

A′′

B′′

C′′

Figure 5 Applying a perturbation to △A′B′C′ that lifts it vertically along CC′, which keeps the
length of CC′ unchanged in a first order approximation.

Because they are bisectors of △A′B′C ′, by Lemma 4, they must meet at the same point
O′. For this setting, we again apply a perturbation argument used in proving Lemma 4,
this time lifting the entire △A′B′C ′ in a direction perpendicular to CC ′. Let the perturbed
triangle be △A′′B′′C ′′. Using the same argument, this time applied to the length changes of
AA′ and BB′, we can reach the conclusion that the line CC ′ must be a bisector of ̸ AO′B.
In other words, shifting AA′ and BB′ synchronously will not reduce the objective function
only if CC ′ bisects ̸ AO′B.

Similarly, AA′ must be a bisector of BO′C and BB′ must be a bisector of AO′C. Using
that CC ′ bisects AO′B and A′C ′B′, it can be derived that ̸ O′A′C ′ = ̸ O′B′C ′, which in
turn shows that ̸ B′A′C ′ = ̸ A′B′C ′. By symmetry, it can then be concluded that △A′B′C ′

is an equilateral triangle. This further shows that ̸ A′O′B′ = ̸ A′O′C ′ = ̸ B′O′C ′ = 2π/3,
implying that O′, the center of △A′B′C ′, is the Steiner point O of the terminals. ◀

From Theorem 6, we can draw the following conclusion. For three terminals with a
Steiner point, as the budget L goes just beyond LST, an equilateral triangle will “grow” out
the Steiner point toward the terminals. Moreover, whenever there are three anchors, they
must form an equilateral triangle. All such equilateral triangles have their vertices lying on
the line segments formed by the terminals and the Steiner point, as illustrated in Fig. 6.

We have not yet show, however, that as L grows, the anchors cannot go from three to
fewer and then become three again. We delay this after the structures with fewer anchors
are characterized.

CGT
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A

B

C

A′

B′

C′
O

Figure 6 For three terminals with a Steiner point (which is always internal), when there are
three anchors, they always form an equilateral triangle.

4.3 One and two anchors

If there are two anchors, they must both be connected to one shared terminal, say A, and
each connecting to a unique terminal in B and C. Let the anchors be B′ and C ′. N(L) then
consists of five segments AB′, AC ′, BB′, CC ′, and B′C ′. It can be shown that △AB′C ′ is
an isosceles triangle (see, e.g., Fig. 7).

A(A′)

B

C

B′

C′
O′

Figure 7 For three terminals with a Steiner point, when there are two anchors, they always form
an isosceles triangle with one of the terminals.

▶ Proposition 7 (Steiner Triangle for Two Anchors). For terminals A, B, and C with a Steiner
point, if the optimal network N(L) has two anchors B′, C ′, then these two anchors form an
isosceles triangle with one of the terminals, that is, AB′ = AC ′.

Proof. By Lemma 5, BB′ bisects ̸ AB′C ′ and CC ′ bisects ̸ AC ′B′. Let the extensions of
BB′ and CC ′ meet at O′ (see Fig. 7). Then AO′ bisects ̸ B′AC ′. Using the perturbation
argument from the proof of Theorem 6, applied to perturb the lengths of BB′ and CC ′,
we can show that AO′ is also a bisector of ̸ B′O′C ′ (we do this by “rotating” △AB′C ′

with center A slightly). This means that ̸ B′O′A = ̸ C ′O′A, which in turn implies that
̸ AB′O′ = ̸ AC ′O′ and further implies ̸ AB′C ′ = ̸ AC ′B′. Therefore, △AB′C ′ is an
isosceles triangle and AB′ = AC ′. ◀

Following the same line of reasoning, when there is a single anchor in an optimal network
N(L), e.g., C ′, that is connected to A, B, and C, if C ′ is not the Steiner point, N(L) must
contain one of AB, BC, and AC. Suppose N(L) contains AB, then all we know is that CC ′

must bisect ̸ AC ′B. See Fig. 2(d) for an example.
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5 Evolution of the budgeted Steiner network

5.1 With Steiner point
Having established the optimal configuration when there are 1-3 anchors, we now piece them
together to understand the evolution of the network. Intuitively, as the budget L increases,
the evolution of the optimal network N(L) would look like that shown in Fig. 2, going from
Steiner tree to having three anchors, then two, then one, and finally becoming the triangle of
the three terminals. To show this is the actual network evolution pathway, however, we must
show that there cannot be discrete jumps in BSN structures, e.g., going from three anchors to
two anchors and then back to three anchors.

We proceed to show that the sequence in Fig. 2 is indeed how N(L) evolves as L increases
by analyzing how J(L) changes as L changes, i.e., dJ

dL .

▶ Lemma 8 (Rate of Change at Anchors). For terminals A, B, and C, let C ′ be an anchor
connected to C. Let the angle formed by the other two edges emanating from C ′ other than
CC ′ be 2α. As C ′ moves closer to C, the rate of change to the objective function dJ

dL due to
the change to CC ′ is

dJ

dL
= 2 cos α − 2

2 cos α − 1 . (3)

Proof. Fig. 8 shows the setting where C ′ is moved along C ′C toward C for a small amount.
By the bisector Lemma 5, the addition of length (in green) to the two edges coming out of
C ′ that are not CC ′ is 2|EC ′| while the reduction of length to |CC ′| is |C ′E|/cos α (the red
segment). Therefore, the change to the budget due to this is ∆L = 2|C ′E|−|C ′E|/cos α.

CC′
E

2α

Figure 8 Moving C′ along C′C for a small amount.

On the other hand, the change to the objective function value is ∆J = −(2|C ′E|/cos α −
2|C ′E|) because C ′C contributes to two shortest paths. Dividing ∆J over ∆L yields Eq. 3. ◀

▶ Corollary 9 (Range of Change, Three Anchors). For three terminals, when there are three
anchors,

dJ

dL
= 1 −

√
3

2 . (4)

Proof. For three anchors, α in Eq. (3) is π/6, by virtue of Theorem 6. We then have
dJ/dL = (

√
3 − 2)/(

√
3 − 1) = (1 −

√
3)/2. ◀

▶ Corollary 10 (Range of Change, 1-2 Anchors). For three terminals, when there are one of
two anchors, let the angle formed at the anchor belonging to the triangle structure of the

CGT



4:10 An Initial Study of Budgeted Steiner Networks

network be 2α, then,

dJ

dL
= 2 cos α − 2

2 cos α − 1 . (5)

Since 0 < 2α ≤ π/2, α ∈ (0, π/4]. Let cos α = x, x ∈ [
√

2
2 , 1). Eq. (3) becomes

g(x) = 2x−2
2x−1 . It is straightforward to derive (using derivatives) that g(x) is negative on the

given range of x and monotonically increases to 0 as x → 1. This means, with reference to
Fig. 8, that the magnitude of dJ

dL becomes smaller as C ′ gets closer to C (α decreases). This
allows us to show that J(L) decreases faster when there are more anchors. We begin with
showing that internal angles at anchors cannot exceed π/3.

▶ Lemma 11 (Feasible Anchor Configurations). For three terminals and an optimal Steiner
network, the internal angles of the triangular structure of the network at non-terminal anchors
are always no more than π/3.

Proof. For three anchors, we have shown they must assume an equilateral triangle con-
figuration. Suppose that in a two-anchor network configuration, the optimal network has
internal angles at non-terminals anchors larger than π/3. For example, suppose that in Fig. 7,
̸ AB′C ′ = ̸ AC ′B′ > π/3. This requires that ̸ B′AC ′ < π/3. Now, suppose we push down
the triangle A′B′C ′ along AA′ by a small δ > 0 and retract along B′B and C ′C so that
L remains unchanged. Because 0 > dJ

dL |A′> dJ
dL |B′= dJ

dL |C′ , this means that J will actually
decrease due to the change. Therefore, the configuration cannot be optimal.

The same argument also applies to the single anchor case: if the internal angle at the
single anchor is larger than π/3, the at least one of the two other internal angles must be
smaller than π/3. ◀

We are now ready to establish the evolution pathway of the optimal Steiner network for
three terminals with Steiner points.

▶ Theorem 12 (BSN Evolution, with Steiner Point). For terminals A, B, and C with a Steiner
point O, as the budget L > LST increases, the optimal Steiner network N(L) will first grow
an equilateral triangle, △A′B′C ′, out of O toward the three terminals. The internal angles of
△A′B′C ′ are bisected by AA′, BB′ and CC ′. The growth continues until one of the anchors,
say A′, reaches terminal A, corresponding to the largest internal angle of △ABC. Then,
an isosceles triangle continuous to grow in place of the equilateral triangle, with its two
internal angles ̸ AB′C ′ and AC ′B′ bisected by BB′ and CC ′, respectively, until one of the
two anchors B′ reaches a second terminal, say B, that corresponds to the second largest angle
of △ABC. Finally, the network grows as C ′ finally reaches C, with CC ′ always bisecting
̸ AC ′B.

Proof. Without loss of generality, assume that ̸ BAC ≥ ̸ ABC ≥ ̸ ACB. By Lemma 3 and
Theorem 6, the initial optimal network when L = LST + ε has an equilateral triangle A′B′C ′

growing out of the Steiner point O, with AA′, BB′, and CC ′ bisecting ̸ B′A′C ′, ̸ A′B′C ′, and
̸ A′C ′B′, respectively. By Lemma 11, before △A′B′C ′ reaches A as an equilateral triangle
(AA′ is shorter than than BB′ and CC ′ when ̸ BAC is the largest angle of △ABC), it cannot
happen that the optimal network jumps to a configuration where one anchor disappears.
To see that this is the case, suppose the network jumps to a configuration where A′ merges
with A. This would force △A′B′C ′ to have ̸ B′A′C ′ < π/3 < ̸ A′B′C ′ = ̸ A′C ′B′, which
is not possible. The situation gets worse if B′ merges with B or C ′ merges with C. Using a
similar argument, we can show that it is also not possible for the optimal network to jump
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from three anchors to having a single anchor without the equilateral △A′B′C ′ reaching its
maximum girth. Using the same approach, we can also show that it is not possible to “jump”
from a two-anchor configuration to a single anchor configuration without the anchor B′

reaching B, as the isosceles triangle expands. ◀

5.2 No Steiner point
When an angle of △ABC, say ̸ BAC, is larger than 2π/3, A acts as a “Steiner” point. In
this case, it becomes impossible for the optimal network N(L) to have three internal anchors.

▶ Lemma 13 (Anchor Multiplicity). For three terminals without a Steiner point, the optimal
network N(L) for any L cannot have three anchors.

Proof. If there are three anchors, Theorem 6 must hold. However, this is impossible if one
of the angles formed by the terminals is equal to or larger than 2π/3. Referring to Fig. 6,
suppose that ̸ BAC ≥ 2π/3. However, also by Theorem 6, ̸ BOC = 2π/3, which is not
possible. ◀

Following similar reasoning used for establishing the case where the Steiner point is in the
interior of △ABC, the evolution of the optimal network for the current setting goes through
the following phases (assuming terminals A, B, and C, and ̸ BAC ≥ 2π/3):

1. The budget L is sufficient to cover the shortest edge of △ABC but less than LST. In this
case, N(L) contains one edge of △ABC

2. The budget L equal to LST. In this case, N(L) is the Steiner tree comprised of AB and
AC.

3. For L = LST +ε for small positive ε, a small isosceles triangle grows out from A, producing
a configuration as shown in Fig. 9(a). The network satisfies the bisector requirement given
by Lemma 7. As L increases, the isosceles triangle expands with the bisector structure in
place, until one of the vertex of the triangle hits a terminal (B).

4. As one of the two anchors merge with a terminal, the other anchor will continue to march
toward the last terminal (C) as L increases, eventually merge with that terminal. A
snapshot of this process is given in Fig. 9(b).

B

A

C

(a) (b)
Figure 9 A spectrum of optimal Euclidean BSN network structures (solid lines) for three terminals

in a typical setup where ̸ BAC ≥ 2π/3, as the allowed budget increases.

6 Conclusion and discussions

In this work, we propose the budgeted Steiner network (BSN) problem to study shortest
path structures among multiple terminals under a path length budget. We establish the
precise evolution of the BSN structure for three arbitrarily located terminals where paths
between each pair of terminals have equal importance. The characterization implies efficient
algorithms for computing optimal BSN structures for any 3-terminal setup and length budget.

The current work just begins to scratch the surface of the study of BSN; it is natural
to study the case where the weights are not equal as well as the case of more terminals,

CGT
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which appear to be much more involved upon a brief examination. It is also interesting to
explore how BSN structures are affected by obstacles. Finally, as an alternative to analytical
approaches, it is interesting to explore establishing BSN structures using numerical methods.
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