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Abstract
We are interested in triangulations of flat tori. A Delaunay flip algorithm performs Delaunay flips
on the edges of an input triangulation T until it reaches a Delaunay triangulation. We prove that
no sequence of Delaunay flips is longer than CΓ · n2 · Λ(T ) where Λ(T ) is the maximum length of an
edge of T , n is the number of vertices of T , and CΓ > 0 depends only on the flat torus. The bound
improves on the upper bound previously known [4] in three ways: the dependence in the “quality” of
the input triangulation is linear instead of quadratic, the bound is tight, and the “quality parameter”
is simpler.
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1 Introduction

Delaunay triangulations are mostly known in the Euclidean plane setting. In this context
a triangulation T can be defined as a maximal planar subdivision of a finite set of points
P [3, Chapter 9]. If the two bounded faces of T incident to an inner edge e form a strictly
convex quadrilateral, then the edge e can be replaced, in T , by the other diagonal of the
quadrilateral. Such operation is called a flip. The flip graph of P is the graph whose vertices
are the triangulations on P and such that two triangulations are linked by an edge if there is
a flip transforming one into the other. If P is in general position (does not contain four points
of a circle), then its flip graph is connected and its diameter is quadratic in the cardinality of
P [5]. A triangulation is Delaunay if the circumdisk of every bounded face contains no point
of the triangulation in its interior. A Delaunay flip algorithm takes as input a triangulation
and performs Delaunay-flips until it reaches a Delaunay triangulation. Such an algorithm
terminates [3, Observation 9.3].

Generalizing Delaunay triangulations [1, 2] and Delaunay flip algorithms [4] to other
geometric spaces than the Euclidean plane is a natural question that has been studied
(and implemented [6, 7]). In that setting Delaunay flip algorithms present the advantage of
handling triangulations containing loops and multi-edges. A flat torus TΓ is the quotient space
of the Euclidean plane under the action of a group Γ generated by two linearly independent
translations (Section 2.1). In this paper we are interested in the complexity (number of flips)
of Delaunay flip algorithms on flat tori. We prove Theorem 1.

I Theorem 1. Every sequence of Delaunay flips starting from a triangulation T of a flat
torus TΓ has length at most CΓ · n2 · Λ(T ), where Λ(T ) is the maximum length of an edge of
T , n is the number of vertices of T , and CΓ > 0 depends only on TΓ. This bound is tight up
to a constant factor.
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6:2 A Bound for Delaunay Flip Algorithms on Flat Tori

An upper bound was already proved [4, Theorem 16], together with the connectivity of
the flip graph, as a particular (easy) case of a more general result on geometric triangulations
of hyperbolic surfaces:

Ch · n2 ·∆(T )2

where Ch depends only on TΓ and ∆(T ) is a parameter measuring in some sense how
“stretched” T is. The definition of ∆(T ) is not used in this paper but we give it (in the
special case of triangulations of flat tori) for comparison with our result: the real ∆(T ) is
the smallest diameter that can have a domain of R2 that is the union over every face t of the
triangulation T of a lift (Section 2.1) of the face t.

To obtain their bound the authors showed that the edges flipped in a sequence of
Delaunay flips cannot be longer than 2∆(T ) [4, Lemma 10]. The upper bound follows from
the observation that the number of segments no longer than L > 0 between two given points
of TΓ is at most quadratic in L.

Our first (small) improvement is to replace the parameter ∆(T ) by the maximum length
Λ(T ) of an edge in T . The inequality Λ(T ) ≤ ∆(T ) is easily observed to be true. Moreover
the definition of ∆(T ) is more intricate than the definition of Λ(T ) and it is not obvious how
to compute ∆(T ) while computing Λ(T ) is immediate.

Our second (main) improvement is to replace the quadratic dependence by a linear
dependence in Λ(T ), obtaining a bound that is tight up to a constant factor.

2 Background

In this paper Rd, d ≥ 1, denotes the usual d-dimensional Euclidean space with the L2 norm.
We call segment of Rd the convex hull [ũ, ṽ] of any two distinct points ũ, ṽ ∈ Rd. We call
interior of [ũ, ṽ] the set [ũ, ṽ] \ {ũ, ṽ}. The interior of a segment of Rd is not empty.

2.1 Flat tori
A flat torus TΓ is the quotient of R2 under the action of a group Γ generated by two
linearly independent translations. For the needs of this section we introduce the projection
ρ : R2 → TΓ mapping every point of R2 to its Γ-orbit.

We call segment of TΓ any projection s = ρ(s̃) of a segment s̃ of R2 such that the
restriction of ρ to the interior of s̃ is injective. If ũ and ṽ are the endpoints of s̃, then ρ(ũ)
and ρ(ṽ) are the (possibly equal) endpoints of s. We call interior of s the image by ρ of the
interior of s̃.

A lift of a point p ∈ TΓ is any point p̃ in the Γ-orbit ρ−1(p). A lift of a segment s of TΓ
is any segment s̃ of R2 whose interior is, through ρ, in one-to-one correspondence with the
interior of s.

The length l (s) of a segment s of TΓ is the length of a lift of s in R2. It is independent
of the lift.

2.2 Delaunay triangulations and flip algorithms
In this paper a topological triangulation of a flat torus TΓ is any embedding of a finite
undirected graph onto TΓ where the two sides of every embeddded edge belong to distinct
faces, and where every face is homeomorphic to an open disk and is bounded by exactly
three distinct embedded edges. We insist that the graph may have loops or parallel edges (a
single face may be bounded by two parallel edges and a loop, or even by three loops). A
geometric triangulation of TΓ is a topological triangulation in which each edge is embedded
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as a segment of TΓ. In this paper every triangulation is geometric so we just use the term
triangulation.

The lift of a triangulation T of TΓ is the infinite triangulation of R2 whose vertices and
edges are the lifts of the vertices and edges of T .

A Delaunay triangulation of TΓ is a triangulation T of TΓ whose lift T̃ is a Delaunay
triangulation of R2 (Figure 1). In other words for each face t̃ of T̃ the disk circumscribing
t̃ contains no vertex of T̃ in its interior. We refer to the literature for an introduction to
Delaunay triangulations of R2 [3, Chapter 9].

Figure 1 A portion of the lift of a Delaunay triangulation of a flat torus. (Gray) Six lifts of a
single face.

Consider a triangulation T of TΓ, an edge e of T and a lift ẽ of e. The segment ẽ of R2 is
an edge of the lift T̃ of T and ẽ is incident with two faces t̃1 and t̃2 of T̃ . Let D̃1 and D̃2 be
the open disks of R2 circumscribing t̃1 and t̃2 respectively. Let also ṽ1 be the vertex of t̃1
that is not a vertex of t̃2, and ṽ2 be the vertex of t̃2 that is not a vertex of t̃1. The condition
ṽ1 ∈ D̃2 is equivalent to ṽ2 ∈ D̃1. If it is satisfied we say that the edge e is Delaunay-flippable
in the triangulation T and this definition is independent of the choice of the lift ẽ. In such
a case the union of the closures of t̃1 and t̃2 is a convex quadrilateral and replacing, in the
triangulation T , the edge e by the segment ρ([ṽ1, ṽ2]) of TΓ yields another triangulation T ′
of TΓ. We say that the triangulation T ′ results from the Delaunay flip of the edge e in the
triangulation T .

We call sequence of Delaunay flips any sequence T0, . . . , Tm of triangulations of TΓ, for
some m ≥ 0, such that for every k ∈ {1, . . . ,m} the triangulation Tk results from the
Delaunay flip of an edge in the triangulation Tk−1. We say that m is the length of the
sequence.

Every Delaunay flip algorithm takes as input a triangulation of TΓ and flips Delaunay-
flippable edges until there is none left to flip. Such an algorithm terminates and outputs a
Delaunay triangulation [4].

2.3 Stereographic projection and Delaunay flips

In R3 let S2 denote the 2-dimensional sphere of radius 1 centered at (0, 0, 0). The point
P = (0, 0,−1) belongs to S2. We identify R2 with the plane of R3 containing the points
whose third coordinate is 1. Given p̃ ∈ R2 we denote by I

p̃
the unique line of R3 containing

the points p̃ and P (Figure 2).
The stereographic projection π is a bijection from R2 to S2 \ {P}. It maps every point

p̃ ∈ R2 to the unique intersection of the line I
p̃
with S2 \ {P}.

CGT



6:4 A Bound for Delaunay Flip Algorithms on Flat Tori

A triangle in R3 is the convex hull of three points that do not belong to a common line.
We call triangular surface any connected union of triangles satisfying the following properties.
Firstly if the intersection of any two distinct triangles of the union is not empty, then it is
either a vertex or an edge of both triangle. Secondly every edge belongs to at most two
triangles. Finally the triangles incident to a common vertex v can be either cyclically or
linearly ordered so that two such triangles share an edge e that is incident to v if and only if
the two triangles are adjacent in the (cyclic or linear) ordering.

Every infinite triangulation T of R2 is mapped uniquely to a triangular surface S as
follows. The vertices of S are the images of the vertices of T under π and the triangles of S
are in one-to-one correspondence with the faces of T : the three vertices ṽ1, ṽ2 and ṽ3 of a
face of T are mapped to the three vertices π(ṽ1), π(ṽ2), and π(ṽ3) of a triangle of S. We say
that such a triangular surface (derived from an infinite triangulation of R2) is standard.

We emphasize that every standard triangular surface shares no point with the sphere
S2 other than its vertices. In fact if a point belongs to, but is not a vertex of, a standard
triangular surface, then it is at distance less than one from the point (0, 0, 0).

P

S2

p̃

π(p̃)

Ip̃

R2

Figure 2 Mapping a lift of a triangulation of flat torus to a standard triangular surface.

Every standard triangular surface S induces a bijection πS : R2 → S sending every p̃ ∈ R2

to the unique intersection with S of the line I
p̃
. Given two standard triangular surfaces S

and S′ (possibly with S = S′) we say that S is above S′ if for every p̃ ∈ R2 the point πS′(p̃)
lies on the closed segment [P, πS(p̃)] of R3, on the line I

p̃
. The above-below relation is a

partial order on the set of standard triangular surfaces. Lemma 2 is folklore and follows from
the fact that every circle on R2 is mapped under the stereographic projection to a circle on
S2 \ P , the latter being the intersection with S2 \ P of a plane of R3.

I Lemma 2. Assume that a triangulation T of a flat torus TΓ results from the Delaunay
flip of an edge e′ in a triangulation T ′ of TΓ and let e be the edge of T resulting from the
flip. Let S and S′ be the standard triangular surfaces associated to the lifts of T and T ′,
respectively. Then S is above S′. Let also p ∈ TΓ be the intersection point of the interiors of
e and e′ and p̃ ∈ R2 be any lift of p. Then πS(p̃) 6= πS′(p̃).

3 Lower bound

On a flat torus TΓ the length of a sequence of Delaunay flips ending at a Delaunay triangulation
cannot be bounded from above by a function depending only on the number of vertices of
the starting triangulation. This fact follows from two observations. The first observation is
that it is easy to construct an infinite set of triangulations of TΓ all having a single common
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vertex, say v, as their vertex set (Figure 3). The second observation is that there can only
be a finite number of Delaunay triangulations of TΓ having v as their unique vertex1.

To understand this phenomenon more precisely, we consider a second parameter of
the starting triangulation T : the maximum length Λ(T ) of an edge in T . We exhibit in
Proposition 3 a family of starting triangulations T for which we prove a lower bound on
the length of every sequence of Delaunay flips starting from T and ending at a Delaunay
triangulation.

Figure 3 On a flat torus, three portions of the lifts of three triangulations with a single common
vertex.

We are interested in a particular flat torus. Consider the two linearly independent
translations by the vectors (1, 0) and (0, 1) respectively. We are interested in the flat torus
T� that is the quotient of R2 under the action of the group generated by those two translations.
We denote by ρ� the canonical projection from R2 to T�. We say that T� is the unit flat
torus.

I Proposition 3. For every n ≥ 1 and every Λ0 > 0 there is a triangulation T of the unit
flat torus T� such that every sequence of Delaunay flips starting from T and ending at a
Delaunay triangulation is longer than

c · n2 · Λ(T )

where Λ(T ) > Λ0 is the maximum length of an edge in T , n is the number of vertices of T ,
and c > 0 is a constant.

The quadratic dependence in the number of vertices is also a consequence of a more
general fact about flips (not necessarily Delaunay flips) of triangulated polygons in the
plane [5, Theorem 3.8]. Our construction is inspired from one previously known in that
setting [5].

Proof. We fix n ≥ 1 and Λ0 > 0. See Figure 4.
For every z ∈ Z and every ε ∈ {0, 1} we define the point p̃εz = ( zn , ε) in R2 and the point

pz of T� by pz = ρ�(p̃0
z). Observe that if z, z′ ∈ Z are such that z ≡ z′ mod n then pz = pz′

and the points p̃0
z, p̃

1
z, p̃

0
z′ , and p̃1

z′ are all lifts of pz. For every z, z′ ∈ Z, we define the segment
sz,z′ of T� as ρ�(

[
p̃0
z, p̃

1
z′

]
).

We are interested in the set F of the triangulations of T� satisfying the following. The
vertices of every triangulation T ∈ F are p1, . . . , pn and the edges of T are partitioned as
follows: T contains n edges that we call fixed and 2n edges that we call free. For k ∈ {1, . . . , n}
the kth fixed edge of T is ρ�(

[
p̃0
k−1, p̃

0
k

]
). The only restriction on the free edges of T is that

they must belong to {sz,z′ : z, z′ ∈ Z}.

1 Pick’s theorem [8] infers the existence of Λ1 > 0 depending only on TΓ such that in R2 every disk of
diameter Λ1 intersects a lift of v. It follows that the edges of any Delaunay triangulation of TΓ with
vertex set {v} are not longer than Λ1. There can only be a finite number of such edges.

CGT



6:6 A Bound for Delaunay Flip Algorithms on Flat Tori

p̃00 p̃01 p̃02 p̃03

p̃10 p̃11 p̃12 p̃13

. . .

. . .

p̃0−1

p̃1−1. . .

. . .

Figure 4 A portion of the lift of a triangulation belonging to F in the proof of Proposition 3.
The fixed edges are in gray.

Claim 1. For every T ∈ F the following holds:
(a) The fixed edges of T are not Delaunay-flippable.
(b) The Delaunay flip of a free edge e in T results in a triangulation T ′ ∈ F .
(c) Such a Delaunay flip replaces the edge e in T by an edge e′ in T ′ such that l(e′) ≥ l(e)−2/n.
(d) The lengths of two free edges of T cannot differ by more than 2.

Claim 2. There is a triangulation in F having a free edge longer than Λ0.
Claim 3. There is a constant Λ1 > 0 such that the edges of every Delaunay triangulation

in F are not longer than Λ1.
Claims 2 and 3 are straightforward. We will prove Claim 1 in the end. We first show

that those claims imply the result. By Claim 2 there is a triangulation T0 ∈ F having a free
edge longer than Λ0. Let Λ(T ) denote the maximum length of an edge in T0; Λ(T ) is the
length of a free edge of T0. Indeed the free edges of T0 have length at least 1 while the fixed
edges of T0 have length 1/n.

We assign to every triangulation T ∈ F a weight ω(T ) that is the sum of the lengths of
its edges. By Claim 1.d, ω(T0) ≥ 1 + 2n(Λ(T )− 2). Indeed T0 has n fixed edges of length
1/n and 2n free edges of length at least Λ(T )− 2.

Consider a sequence T0, . . . , Tm of Delaunay flips for some m ≥ 0 that starts from T0
and ends at a Delaunay triangulation Tm. By Claims 1.a and 1.b all the triangulations
T0, . . . , Tm belong to F . By Claim 1.c, holds ω(Tm) ≥ ω(T0)− 2m/n. By Claim 3 there is a
constant Λ1 > 0 such that ω(Tm) ≤ 3nΛ1. Thus

2m ≥ n(ω(T0)− ω(Tm)) ≥ n+ (2Λ(T )− 3Λ1 − 4)n2.

That proves the result. Now we prove Claim 1.
Proof of Claim 1. To prove (a) consider a fixed edge e of the triangulation T . There is

some k ∈ {1, . . . , n} such that the segment ẽ of R2 between p̃0
k−1 = (k−1

n , 0) and p̃0
k = ( kn , 0)

is a lift of e. Consider the two faces t̃1 and t̃2 of the lift T̃ of T that are incident to ẽ. Let
ṽ1 be the vertex of t̃1 that is not a vertex of t̃2 and let ṽ2 be the vertex of t̃2 that is not a
vertex of t̃1. Up to renaming ṽ1 and ṽ2 there are z, z′ ∈ Z such that ṽ1 = p̃1

z = ( zn , 1) and
ṽ2 = ( z

′

n ,−1). It is straightforward to check that the open disk whose boundary contains
p̃0
k−1,p̃0

k, and ṽ1 does not contain ṽ2.
To prove (b) and (c) consider a free edge e of the triangulation T and assume that e is

Delaunay-flippable. There are z, z′ ∈ Z such that e = sz,z′ . The segment ẽ =
[
p̃0
z, p̃

1
z′

]
is a

lift of e so it is incident to two faces t̃1 and t̃2 of the lift T̃ of T . Let ṽ1 be the vertex of
t̃1 that is not a vertex of t̃2 and let ṽ2 be the vertex of t̃2 that is not a vertex of t̃1. Up to
renaming ṽ1 and ṽ2 there is ε ∈ {1,−1} such that ṽ1 = p̃0

z−ε and ṽ2 = p̃1
z′+ε: every other

case would contradict the fact that both T and the triangulation resulting from the flip of
e in T are indeed triangulations. The edge e′ resulting from the lift of e in T admits the
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segment [ṽ1, ṽ2] as a lift so l(e′) is the L2 norm of ṽ1 − ṽ2. Recall also that l(e) is the L2
norm of p̃0

z − p̃1
z′ . By the triangular inequality the difference between the L2 norms of ṽ1− ṽ2

and p̃0
z − p̃1

z′ cannot exceed the sum of the L2 norms of ṽ1 − p̃0
z and ṽ2 − p̃1

z′ . The latter are
both equal to 1/n by construction. That proves l(e′)− l(e) ≥ −2/n.

To prove (d) consider a lift ẽ of a free edge e of T and the two vertices ṽ1 and ṽ2 of ẽ.
Let τ1 be the translation by the vector (1, 0) (one of the two translations defining T�). The
four points of R2 that are ṽ1, ṽ2, τ1(ṽ2) and τ1(ṽ1) are the vertices of a closed parallelogram
P�. The closed parallelogram P� contains a lift of every free edge of T . Indeed every free
edge f of T other than e admits a lift f̃ whose interior intersects the interior of P� 2, and
the interior of f̃ cannot intersect a side of P� because that would imply that the interior
of the edge f intersects another edge of the triangulation T . To conclude observe that by
construction the sides of P� are of length 1 (for the sides ṽ1τ1(ṽ1) and ṽ2τ1(ṽ2)) and of length
l(e) (for the sides ṽ1ṽ2 and τ1(ṽ1)τ1(ṽ2))). Thus every free edge of T has its length between
l(e)− 2 and l(e) + 2. J

4 Upper bound

In Section 3 we exhibited a family of triangulations T for which the length of a sequence
of Delaunay flips starting from T and ending at a Delaunay triangulation is bounded from
below (Proposition 3). In this section we show that our construction was actually “the worst
possible” and that the lower bound of Proposition 3 is asymptotically matched by a general
upper bound over all possible starting triangulations on a flat torus. This upper bound comes
from an observation formalized by Proposition 5. Informally, given two “long” edges e1 and
e2 among the edges flipped in a sequence of Delaunay flips, if e1 and e2 have “comparable”
lengths, then they must be “roughly parallel”.

4.1 Statement of Proposition 5
Consider a flat torus TΓ. We say that a segment s of TΓ follows a segment s′ of TΓ (possibly
with s = s′) if there are triangulations T and T ′ of TΓ (possibly with T = T ′) such that s
is an edge of T , s′ is an edge of T ′, and there is a sequence of Delaunay flips (possibly of
length 0) starting from T ′ and ending at T .

We map every segment s of TΓ to a pair {p̃,−p̃} of opposite nonzero vectors of R2 as
follows. We consider the endpoints ũ and ṽ of a lift of s and define the point p̃ as the image
of 0R2 under the translation that maps ũ to ṽ. The resulting pair {p̃,−p̃} does not depend
on the choice of ũ and ṽ. We call these two points the signature points of the segment s. The
signature has the following property.

I Lemma 4. In a flat torus TΓ there cannot be more than two distinct segments with the
same endpoints and the same signature points.

Proof. Consider two segments s and s′ of TΓ and assume that s and s′ have the same
endpoints u and v (u and v may be equal) and the same signature points p̃ and −p̃. Consider
also a lift ũ of u. For ε ∈ {1,−1} let ṽε denote the image of ũ under the translation that
maps 0R2 to εp̃. There are ε, ε′ ∈ {1,−1} such that the segment [ũ, ṽε] of R2 is a lift of s and
such that the segment [ũ, ṽε′ ] of R2 is a lift of s′. If ε = ε′, then s = s′. J

2 The closed parallelogram P� is a fundamental domain for the flat torus T�.

CGT



6:8 A Bound for Delaunay Flip Algorithms on Flat Tori

I Proposition 5. Given a flat torus TΓ there are κ > 0 and l0 > 0 depending only on TΓ
such that the following holds. If a segment s of TΓ follows a segment s′ of TΓ and if l (s) > l0
and l (s′) ∈ [l (s) /2, 2l (s)], then the signature points of s′ are at distance at most κ from the
line containing the signature points of s.

See Figure 5 for an illustration of Proposition 5.

2l(s)

1
2 l(s)

(0,0)

Figure 5 Illustration of Proposition 5. (Black disks) Signature points of s. (Black squares)
Signature points of s′. (Gray) Points at distance at most κ from the line containing the signature
points of s.

4.2 Proof of Proposition 5
I Lemma 6. Assume that a segment s of a flat torus TΓ follows a segment s′ of TΓ and
consider a lift s̃ of s and a lift s̃′ of s′. If s̃ and s̃′ intersect in their respective interiors and
if there is an open disk D̃ whose boundary ∂D̃ contains the two endpoints of s̃ and one of
the endpoints of s̃′, then the other endpoint of s̃′ lies outside D̃.

Observe that in Lemma 6 if a point lies outside the open disk D̃ it may still lie within the
boundary circle ∂D̃. In particular the conclusion of the lemma holds when s = s′ and s̃ = s̃′.

Proof. Let ũ, ṽ denote the two endpoints of s̃, and ũ′, ṽ′ denote the two endpoints of s̃′.
Assume that the points ũ, ṽ, and ũ′ belong to the circle ∂D̃. The projection π(∂D̃) is the
intersection with S2 \ {P} of a plane P ⊂ R3. The plane P bounds two closed half-spaces
whose union is R3 and whose intersection is P. We will show that π(ṽ′) belongs to the
half-space R containing the point P .

There are triangulations T and T ′ of TΓ such that s is an edge of T , s′ is an edge of T ′,
and there is a sequence of Delaunay flips starting from T ′ and ending at T . The lift T̃ of T
and the lift T̃ ′ of T ′ are infinite triangulations of R2; s̃ is an edge of T̃ and s̃′ is an edge of
T̃ ′. Let S and S′ be the standard triangular surfaces associated to T̃ and T̃ ′ respectively.
Lemma 2 and the transitivity of the above-below relation imply that S is above S′ (possibly
with S = S′). Thus any point p̃ ∈ R2 of the intersection of s̃ and s̃′ is such that πS′(p̃)
lies on the segment [P, πS(p̃)] of R3 on the line I

p̃
. (Section 2.3). The point πS(p̃) is the

intersection with the line I
p̃
of an edge of S: this edge is the segment [π(ũ), π(ṽ)] of R3. This

segment is fully contained in the plane P since its endpoints π(ũ) and π(ṽ) both belong to
P. In particular πS(p̃) belongs to P and πS′(p̃) belongs to the half-space R. Since πS′(p̃) is
distinct from π(ũ′) and belongs to the segment

[
π(ũ′), π(ṽ′)

]
of R3 and since both πS′(p̃)

and π(ũ′) belong to R then so does π(ṽ′). J
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I Lemma 7. Let ε > 0 and d > 20ε. Let ũ ∈ R×] −∞, 0[ and ṽ ∈ R×]0,+∞[ such that
‖ũ‖ < ε and ‖ṽ − ũ‖ < 4d. There is a unique open disk D̃ whose boundary contains ũ and
the points (d, 0) and (−d, 0). If ṽ lies outside D̃, then y

ṽ
< 100ε where y

ṽ
denotes the second

coordinate of ṽ.

Observe that in Lemma 7 if the point ṽ lies outside the open disk D̃ it may, still, belong
to its boundary. See Figure 6 for an illustration of Lemma 7.

(d, 0)(−d, 0) (0, 0)

c̃

ũ

ṽ

D̃

Figure 6 Illustration of Lemma 7.

Proof. We write ũ = (x
ũ
, y
ũ
) and ṽ = (x

ṽ
, y
ṽ
) and recall that y

ṽ
> 0 and y

ũ
< 0 both hold

by assumption. The latter enforces the existence of the open disk D̃. Now let c̃ denote the
center of D̃. The segment [−d, d]× {0} is a chord of D̃ and its midpoint is the point (0, 0).
Thus the first coordinate of c̃ is 0 and the radius of D̃ is

√
y2
c̃

+ d2 where y
c̃
denotes the

second coordinate of c̃. As shown below, one easily gets y
c̃
> 0 from the assumptions y

ũ
< 0,

‖ũ‖ < ε, and d > ε. See Figure 6.
We first prove a few inequalities that may seem arbitrary at first but will be used in the

end of the proof. Pythagorean Theorem gives (y
c̃
− y

ũ
)2 + x2

ũ
= y2

c̃
+ d2 which simplifies to

−2y
ũ
y
c̃

= d2 − x2
ũ
− y2

ũ
. We assumed ‖ũ‖ < ε and d >

√
2ε, that implies x2

ũ
+ y2

ũ
< d2/2 and

−y
ũ
< ε and thus

4εy
c̃
> d2. (1)

Equation (1) combined with the assumption that d > 20ε implies

y
c̃
> 100ε. (2)

The triangle inequality gives ‖ṽ‖ ≤ ‖ṽ − ũ‖+ ‖ũ‖. The latter is smaller than 4d+ ε < 5d by
assumptions. So ‖ṽ‖2 < 25d2 and by Equation (1) we obtain

‖ṽ‖2 < 100εy
c̃
. (3)

The combination of Equation (3) and Equation (2) imply

‖ṽ‖ < y
c̃
. (4)

Now we prove y
ṽ
< 100ε. Since ṽ lies outside D̃ then (y

c̃
− y

ṽ
)2 + x2

ṽ
≥ y2

c̃
+ d2, which

simplifies to y2
ṽ
− 2y

c̃
y
ṽ

+ x2
ṽ
− d2 ≥ 0. We study this inequality to derive a bound on y

ṽ
.

Equation (4) implies 4(y2
c̃
+d2−x2

ṽ
) > 0 hence the polynomialX2−2y

c̃
X+x2

ṽ
−d2 univariate in

X admits two real roots y
c̃
±
√
y2
c̃

+ d2 − x2
ṽ
. Equation (4) enforces y

ṽ
≤ y

c̃
−
√
y2
c̃

+ d2 − x2
ṽ
,

which implies

y
ṽ
< y

c̃

(
1−

√
1− x2

ṽ
/y2
c̃

)
.
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Equation (3) and Equation (2) successively infer

y
ṽ
< y

c̃

(
1−

√
1− 100ε/y

c̃

)
≤ 100ε.

This completes the proof. J

Now we prove Proposition 5 using Lemmas 6 and 7.

Proof. (Proof of Proposition 5)
There exists ε > 0 such that every open disk of diameter ε intersects the Γ-orbit of every

point of R2. The value of ε depends on Γ only. We set κ = 101ε and l0 = 40ε.
Assume that a segment s of a flat torus TΓ follows a segment s′ of TΓ. Consider a lift s̃ of

s. We may assume, by applying a rotation or translation if necessary, that s̃ is a horizontal
segment whose center is the point (0, 0). We claim that there exists a lift s̃′ of s′ whose
endpoints ũ = (x

ũ
, y
ũ
) and ṽ = (x

ṽ
, y
ṽ
) satisfy the following three conditions: ‖ũ‖ < ε,

y
ũ
< 0, and y

ũ
≤ y

ṽ
. To prove this claim start with any lift of s′ and let p̃ = (x

p̃
, y
p̃
) and

q̃ = (x
q̃
, y
q̃
) denote the endpoints of this lift. We may assume, by exchanging p̃ and q̃ if

necessary, that y
p̃
≤ y

q̃
. By definition of ε, there is a point ũ ∈ R2 at distance less than ε/2

from the point (0,−ε/2) and a translation τ ∈ Γ such that τ(p̃) = ũ. Setting ṽ = τ(q̃) proves
the claim.

The signature points of s belong to x-axis (the line R× {0}). We consider one of the two
signature points of s′, namely ṽ − ũ. Since −ε < y

ũ
< 0 and y

ũ
≤ y

ṽ
proving y

ṽ
< 100ε will

infer the proposition. Having y
ṽ
≤ 0 would conclude so we assume y

ṽ
> 0. There are two

cases: either s̃ and s̃′ intersect in their interiors or they do not.
First assume that s̃ and s̃′ intersect in their interiors. We set d = l (s) /2 and we have

d > l0/2 = 20ε. Lemma 6 implies that ṽ lies outside the open disk D̃ whose boundary
contains ũ and the endpoints (d, 0) and (−d, 0) of s̃. Thus the conditions of Lemma 7 are
satisfied and y

ṽ
< 100ε.

If s̃ and s̃′ do not intersect in their interiors, then ṽ lies outside D̃ and the conditions of
Lemma 7 are satisfied again. J

4.3 Proof of the upper bound
Lemma 8 is folklore. We give a proof of it for completeness.

I Lemma 8. Consider a flat torus TΓ, an integer m ≥ 0, and a sequence of Delaunay flips
T0, . . . , Tm. For every k ∈ {1, . . . ,m}, we let ek denote the edge of Tk−1 that is flipped to
obtain Tk. The segments e1, . . . , em of TΓ are pairwise distinct.

Proof. Assume there are k, k′ ∈ {1, . . . ,m} such that k < k′ and ek = ek′ . Let Sk−1, Sk
and Sk′−1 be the standard triangular surfaces associated to the lifts of Tk−1, Tk and Tk′−1,
respectively. Consider the edge f of Tk resulting from the Delaunay flip of the edge ek in
Tk−1. Let p ∈ TΓ be the intersection point of the interiors of f and ek. Let also p̃ ∈ R2 be a
lift of p.

Since ek = ek′ then πSk−1(p̃) = πSk′−1(p̃). By Lemma 2 Sk′−1 is above Sk and Sk is above
Sk−1. We deduce πSk

(p) = πSk−1(p̃) = πSk′−1(p̃). But Lemma 2 also gives πSk
(p̃) 6= πSk−1(p̃)

hence a contradiction. J

The edges flipped in a sequence of Delaunay flips are not longer than 2∆(T ) where ∆(T )
is a parameter measuring in some sense how “stretched” the starting triangulation T is [4,
Lemma 10]. The arguments yielding a bound in terms of ∆(T ) easily infer a bound in terms
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of the maximum length of an edge in T . This new bound is stated by Lemma 9. The proof
of Lemma 9 is only a slight adaptation of the anterior proof [4, Lemma 10], we give it for
completeness.

I Lemma 9. Consider triangulations T and T ′ of a flat torus TΓ and assume that there is a
sequence of Delaunay flips starting from T ′ and ending at T . Then the edges of T cannot be
more than twice as long as a longest edge of T ′.

Proof. Let Λ(T ′) be the maximum length of an edge of T ′ and assume that there is an edge
e of T such that l(e) > 2Λ(T ′). Consider a lift ẽ of e and let p̃ ∈ R2 be the middlepoint of ẽ.
There is a face t̃′ of the lift T̃ ′ of T ′ such that p̃ belongs either to t̃′ or to the boundary of t̃′.
The three edges of the triangle t̃′ are not longer than Λ(T ) so, by the triangle inequality, the
distance from p̃ to any vertex of t̃′ is not greater than Λ(T ) and the closed disk D̃ ⊂ R2 of
diameter Λ(T ) and centered at p̃ contains t̃′. Also the two endpoints ũ and ṽ of ẽ lie outside
D̃.

Consider the standard triangular surfaces S and S′ associated to the lifts of T and T ′,
respectively. The projection π(∂D̃) of the boundary ∂D̃ of D̃ is the intersection with S2 \ P
of a plane P ⊂ R3. The plane P bounds two open half-spaces. The points π(ũ) and π(ṽ)
both belong to the half-space R that contains P . Thus πS(p̃) ∈ R. The vertices w̃1, w̃2
and w̃3 of t̃′ all belong to ∂D̃ thus π(w̃1), π(w̃2) and π(w̃3) all belong to P and πS′(p̃) ∈ P.
Consequently πS′(p̃) does not lie on the segment [P, πS(p̃)] of R3, contradicting Lemma 2. J

Now we prove Theorem 1. The core of the proof is an observation that we give here to help
build the intuition. Consider a flat torus TΓ and κ > 0. The following is a straightforward
application of Pick’s theorem [8].

I Observation 10. There is C > 0 (depending on TΓ, and κ) satisfying the following. Let L
be a line in R2 containing the point (0, 0). Let 0 < r < R. Let m be the number of points of
the Γ-orbit of (0, 0) that are at distance less than κ from L, and whose distance from (0, 0)
lies between r and R. Then m ≤ C(R− r).

Proof. (Proof of Theorem 1) Consider m ≥ 0 and a sequence of Delaunay flips T0, . . . , Tm
such that T0 = T . For every k ∈ {0, . . . ,m} the edges of Tk constitute a set Ek of segments of
TΓ. We are interested in the union E of the sets E0, . . . , Em. By Lemma 8 the cardinality of
E is greater or equal to m. We partition the elements of E into n(n+ 1)/2 subsets according
to their endpoints, as follows. For every unordered pair {u, v} of vertices of the triangulation
T , we consider the set of segments in E that end at u and v. For single vertex v of T , we
consider the set of segments in E that admit v as their unique endpoint. Proving that each
of those subsets contains at most CΓ · Λ(T ) segments will infer the result.

So consider such a subset F ⊆ E in the partition that we just described and let u and v
be the (possibly equal) endpoints of the segments in F . Let κ > 0 and l0 > 0 be given by
Proposition 5.

By Lemma 4 there cannot be more than two distinct segments of TΓ having the same
endpoints and the same signature points. Fix a lift ũ of u and a lift ṽ of v. For any signature
point p̃ of a segment in F there is τ ∈ Γ such that either p̃ or −p̃ is equal to τ(ṽ)− ũ. Thus
there is a finite number of such signature points that are at distance at most l0 from the
point (0, 0), and this finite number depends only on TΓ (recall that l0 depends only on TΓ).
That implies that there is only a finite number of segments in F of length at most l0.

Consequently we let F ′ ⊆ F be the set of segments in F that are longer than l0: we will now
bound the cardinality of F ′. By Lemma 9 no segment in F ′ is longer than 2Λ(T ). We partition
the segments in F ′ by their lengths as follows. We consider j0 = l0 < j1 < · · · < jN = 2Λ(T )
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for some integer N ≥ 1 such that for every k ∈ {1, . . . , N} the reals jk−1 and jk differ by
a factor of at most 2. For every k ∈ {1, . . . , N}, we let F ′k denote the set of segments in
F ′ whose length belongs to ]jk−1, jk]. We now fix k and claim that F ′k contains at most
C ′Γ · (jk − jk−1) segments, where C ′Γ > 0 is a constant that depends only on TΓ.

To prove this claim observe that if F ′k is not empty, then it contains a segment s that
follows every other segment s′ ∈ F ′k \ {s}. For another such segment s′, Proposition 5 states
that the signature points of s′ are at distance at most κ from the line containing the signature
points of s. Also the distance to (0, 0) of the two signature points of s′ is the length of s′ and
thus lies between jk−1 and jk. Finally, observe that the signature points of elements of F ′k all
belong, by definition, to the Γ-orbit O of some point of R2. It follows from Observation 10
that the number of signature points of elements of F ′k is at most linear in jk − jk−1 and the
constant coefficient depends only on TΓ (recall that κ depends only on TΓ).

That, together with Proposition 3 for the lower bound, concludes the proof of Theorem 1.
J
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