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Abstract
We study the continuous motion of smooth isometric embeddings of a planar surface in three-
dimensional Euclidean space, and two related discrete analogues of these embeddings: polygonal
embeddings and flat foldings without interior vertices, under continuous changes of the embedding
or folding respectively. For each of these three models of continuous motion, we show that every
star-shaped or spiral-shaped domain is unlocked: a continuous motion unfolds it to a flat embedding.
Here, a domain is spiral-shaped if it can be reduced to a point by a continuous family of similarities
whose images remain within the domain; we prove that polygons with this property can be recognized
in linear time. However, we provide an example of a disk with two holes that has locked embeddings:
its embeddings are topologically equivalent to a flat embedding but cannot reach a flat embedding
by continuous motion.
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1 Introduction

Much research in computational geometry has examined the ability to deform a shape while
preserving its geometric structure. A classical example is the “carpenter’s rule”, a polygonal
chain whose allowed motions may continuously change any vertex angle, but may not change
the lengths of its segments or introduce self-crossings between them. Any carpenter’s rule in
two dimensions may be continuously unfolded so that it lies flat, on a straight line [27, 9, 22].
However, carpenter’s rules in three dimensions can have locked configurations, unable to
reach a straightened configuration even though there is no topological obstacle to their
reconfiguration [18, 4, 5, 12, 3, 8]. Other similar geometric reconfiguration problems include
bloomings, continuous and collision-free unfoldings from polyhedra to flat nets that preserve
the shape of each face [26, 6, 20, 10, 31, 16], and the continuous rigid motions of single-vertex
origami patterns [28, 21, 1]. Demaine, Devadoss, Mitchell, and O’Rourke studied “folded
states” of simple planar polygons in R3, which they defined in terms of a surface-distance-
preserving mapping to R3 together with a consistent “local stacking order” at parts of
the polygon that are mapped onto each other. As they showed, any folded state can be
continuously transformed to any other folded state: the configuration space of these states is
connected [13, 11]. In this work we study the reconfigurability of three natural restricted
forms of these folded states:

Smooth isometric embeddings into R3, where the embedded surface is doubly differentiable
(having a tangent plane everywhere) without self-contact. Here, “isometric” means that
distances, as measured by curves along the embedded surface, must remain unchanged,
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5:2 Locked and Unlocked Smooth Embeddings of Surfaces

but the embedding is otherwise free to vary continuously.

Polygonal (piecewise linear) isometric embeddings into R3 without interior vertices. Here,
the points where the mapping is not locally linear must extend across the surface in a line
segment from boundary to boundary; we call this a fold line. We require the embedding
to have finitely many connected linear pieces, and no self-contact. The folds or bend
lines are not fixed in their positions; they may “roll” along the surface, rotate in place, or
appear and disappear as dihedral angles reach π.

Planar folded states (flat foldings) without interior vertices. We again require that the
mapping be piecewise linear with finitely many pieces and that the fold lines extend from
boundary to boundary across the surface, allowing them to roll or rotate as the mapping
changes continuously. However, in this case, the piecewise linear mapping is from R3 to
R2, so self-contact is unavoidable.

The reconfigurability of these embeddings is complicated by a certain form of rigidity that
they share, which is not present in less-restricted embeddings. Whenever a flat surface is
smoothly embedded into R3, each point where the embedding is curved must belong to a
“bend line” on the surface, a line segment that extends from boundary to boundary on the
surface, and is embedded as a line segment in R3 [15]. The system of bend lines, found in
this way, can hold the surface rigid in one of its two dimensions, while allowing it to flex in
the other dimensions. A familiar example can be found in a slice of pizza, held at the crust.
If one attempts to hold the pizza flat, its tip will droop, but bending the slice lengthwise will
extend rigid bend lines through the slice, preventing drooping [30]. Similarly, a large sheet
of paper such as a loose poster can be very flexible, but a poster rolled into a tight cylinder
becomes quite rigid: the cylinder cannot bend without crumpling (breaking the smoothness
of its embedding). Our restriction against interior vertices of polygonal embeddings and flat
foldings again causes fold lines to continue in a straight line from boundary to boundary of a
given shape, providing a combinatorial model of the same phenomenon. We have studied
flat foldings with this restriction (but not their reconfiguration) in previous work [14].

These models of folded states are closely related to each other. Any smoothly embedded
developable surface1 can be approximated arbitrarily closely by a polygonal surface without
interior vertices (but with slightly different intrinsic geometry), obtained by using a subset
of the bend lines of the smooth surface as fold lines of the polygonal surface, and adding
intermediate fold lines between consecutive pairs of chosen bend lines that are smooth in
space. In the other direction, any polygonal embedded surface without interior vertices
can be approximated arbitrarily closely by a smooth surface, obtained by cutting away the
surface close to any vertex where two or more fold lines meet and then approximating each
fold by a small-radius cylindrical surface. The same approximation method, replacing folds
by cylinders, also works for flat foldings with acyclic above-below relations, after lifting the
overlapping pieces of the flat-folded surfaces to closely-spaced parallel planes. This method
of lifting flat-folded surfaces to parallel planes and replacing folds by cylinders was already
used in 1930 by Michael Sadowsky to prove that a Möbius strip, formed by twisting and
joining the ends of a flat rectangle, has a smooth embedding whenever the aspect ratio of
the rectangle exceeds

√
3 [17].

1 A developable surface is a doubly-differentiable surface with everywhere-zero Gaussian curvature. Smooth
isometric embeddings of a flat subset of the plane are automatically developable, but not vice versa;
for instance, removing the apex from a cone produces a developable surface that is not an isometric
embedding of a plane surface.
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Our folded states are special cases of the ones previously considered by Demaine et
al. [13, 11], and we retain their notion of a continuous motion as a mapping from the closed
unit interval [0, 1] to folded states that is continuous under the sup-norm of the distances
of mapped points and (for flat foldings) consistent with respect to the local stacking order.
The initial configuration of a motion is the mapping for the parameter value 0, and the final
configuration is the mapping for the parameter value 1. For all three of our models of folded
states, we prove the following new results:

If a compact subset of the plane can be reduced to a point by a continuous shrinking
motion (a continuous family of similarity transformations whose images all remain within
the shape) then it has a connected space of folded states: every smoothly embedded or
folded state can be continuously unfolded to a flat state (one that lies within a single
plane, with no self-overlaps). The sets to which this result applies are topological disks
and include all star-shaped domains.
There exist subsets of the plane, topologically equivalent to a disk with two holes, that
can be locked: they have embeddings that are topologically equivalent (ambient isotopic)
to their embedding as a subset of a plane, but from which continuous deformations within
the same folding model cannot reach this flat state.

As an auxiliary result in an appendix, we prove that the polygons that have a continuous
shrinking motion can be recognized in linear time.

2 Shapes that can shrink into themselves

A star-shaped polygon, or more generally a star-shaped domain, is a subset S of the plane such
that, with an appropriate choice of one point of the plane to be the origin, every scaled copy
pS for p ∈ [0, 1] is a subset of S itself. These are widely studied in computational geometry,
and can be recognized in linear time [19]. However, these are not the only shapes that have
a continuous shrinking motion of scaled copies of the shape into themselves. Figure 1 depicts
a different type of continuous shrinking motion, in which the shape spirals inwards while
shrinking. Such a motion can be described by coordinatizing the plane by complex numbers,
again for an appropriately chosen origin (the center of the spiral motion), choosing a complex
number q of absolute value less than one, and considering the family of scaled copies qpS for
p ∈ [0,∞). The linear shrinking motion of star-shaped domains is a special case of this type
of motion in which q is a real number in the interval (0, 1).

Not every continuous shrinking motion is of this form. Once a shape has shrunk to a small
fraction of its original size, there is considerable freedom in how it may continue to move and
shrink without passing outside its original area. However, near the start of the motion (in a
technical sense, as a limiting case of the part of the motion that shrinks the shape from scale
1 to 1− ε, in the limit as ε→ 0), the motion must approximate this type of spiral shrinking
motion. As a consequence, there must exist a center of this limiting motion, and a complex
scaling factor q, such that the motion defined by this center and by q, in its initial moments,
causes the shape to shrink within itself. If this is the case, then at all subsequent times, the
same spiral shrinking motion will remain within the shrunken copies of the shape immediately
before them in the motion, and therefore within the original shape as well. In this sense, the
inward-spiraling shrinking motions defined in this way are completely general: if a shape
has any continuous shrinking motion, it has an inward-spiraling shrinking motion. Following
Aharonov et al. [2], we call a compact set S that has a continuous shrinking motion of this
type a spiral-shaped domain. In Appendix A, answering a question posed in the conference

CGT
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Figure 1 A polygon (left) with a continuous shrinking motion (right). The red dashed line
connecting two opposite corners through the center of the motion demonstrates that this polygon is
not star-shaped: no point on one side of the red dashed line can see into the corner on the other
side of the line. As the polygon shrinks, these corners trace out logarithmic spirals; the angle made
by these spirals with the red dashed line is the polar tangential angle of its spiral.

version of this paper, we prove that testing whether a polygon forms a spiral-shaped domain
can be done in linear time, by applying algorithms for LP-type optimization problems.

The main results of this section are that every spiral-shaped domain S has a connected
space of smooth embeddings, a connected space of polygonal embeddings without interior
vertices, and a connected space of flat-foldings without interior vertices. Equivalently, every
embedding of each type can be continuously unfolded. The simplest case concerns smooth
embeddings.

I Theorem 1. Every smooth embedding of a spiral-shaped domain has a continuous motion,
through smooth embeddings, to a flat embedding.

Proof. Let S be the given spiral-shaped domain, and f : S → R3 be its smooth embedding.
Parameterize an inward-spiraling shrinking motion of S as si : S → S where i ∈ (0, 1], s1 is
the identity, and each si scales S by a factor of i, converging as i → 0 to a single central
point of the motion (which may or may not be on the boundary of S).

Our proof converts this parameterized family of scalings to a parameterized family of
smooth embeddings of S at a single scale, by composing si, f , and a function that expands
R3 by a factor of 1/i to restore the original size of S. The obvious expansion function R3 by
(x, y, z) 7→ (x/i, y/i, z/i) does not work, because of the following issues:

Composing si, f , and an expansion by 1/i does provide a continuous motion of smooth
embeddings on the half-open interval (0, 1], whose maximum curvature tends towards
zero as the parameter goes to zero.2 However, we need a continuous motion on the closed
interval [0, 1] for which the limiting embedding at parameter value zero exists and is
completely flat.
When the origin of R3 does not belong to all of the rescaled and smoothly embedded
copies of S, the composition with R3 by (x, y, z) 7→ (x/i, y/i, z/i), as i→ 0, will produce

2 The maximum curvature is the maximum of the normal curvatures, the curvatures that can be obtained
at some point p of the surface by intersecting the surface with a plane containing p and its normal vector,
and using the curvature at p of the resulting plane curve. Thus, when the maximum curvature tends
towards zero, so do all normal curvatures. This is stronger than merely requiring that the Gaussian
curvature tend towards zero, which is true for all developable surfaces.
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Figure 2 A spiral-shaped domain between two logarithmic spirals. In any continuous shrinking
motion, this domain retains the same spiral form near the center p of the spiral, preventing later
stages of the shrinking motion from being shortcut to a linear motion. The red arrow depicts a
vector at p, whose image under any smooth embedding of f (that is, the vector tangent to the
embedded surface at f(p) with the same direction and length) can be used as the reference vector in
the proof of Theorem 1.

smooth embeddings of S whose distance from the origin is inversely proportional to i,
preventing them from having a limit. We can prevent this by choosing coordinates for R3

that have as their origin f(p), where p is the limit point of the inward-spiraling shrinking
motion on S. In this way, the composition of si, f , and an expansion by 1/i will act
as the identity on this point, and more strongly will preserve the tangent plane of the
surface at that point.
This still does not complete the proof, because a spiral inward-shrinking motion of the
domain, composed with f and (x, y, z) 7→ (x/i, y/i, z/i), will cause the embeddings to
rotate at increasing speed as i→ 0, preventing the continuous motion from having a flat
limiting surface at i = 0. For the polygonal domain of Figure 1, this problem can be
circumvented by switching from the spiral inward-shrinking motion to a linear scaling
transformation in S, once the scaled copies of S become small enough that this linear
scaling stays entirely within S. However, for some other shapes, such as the domain
between two logarithmic spirals depicted in Figure 2, switching to linear scaling is never
possible. Instead, we address this third issue by choosing a reference vector tangent
to S at f(p). We compose si, f , an expansion by 1/i, and a rotation of R3 (with
axis perpendicular to the tangent plane at f(p)) that restores this vector to its original
direction.

Let fi denote the resulting composition of si, f , an expansion of R3 with a careful choice of
origin, and a rotation that restores the original directions of vectors in the tangent plane to
the embedded surface. Then fi, for values of i in the half-open interval (0, 1], describes a
continuous motion with f1 = f as one endpoint of the motion.

Recall that the maximum curvature of a surface is the maximum of the normal curvatures
at any of its points, and that the normal curvature is defined as the curvature of a plane
curve in a tangent plane, that is, the inverse of the radius of an osculating circle to the curve
in that plane. To calculate the behavior of this maximum curvature in the limit, we combine
the following observations.

Because f(S) is smooth and compact, its normal curvatures have a maximum, κ.
Taking a subset f(si(S)) of the surface f(S) does not change the normal curvatures at
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the points of the subset, and only restricts the set over which we are taking a maximum,
so its maximum curvature is still at most κ.
Scaling the surface by a factor of 1/i scales each osculating circle in each normal plane by
the same factor. Therefore it scales each normal curvature, and the maximum curvature
defined from them, by i. As a result, the 1/i-scaled copy of f(si(S)) will have maximum
curvature at most iκ.
Rotating to produce fi(S) does not change the curvature.

Letting i go to zero in the limit, this bound on the maximum curvature of fi(S) also goes to
zero in the limit.

For each point q ∈ S, fi(q) can be obtained by the exponential map: follow a curve on
fi(S) of length |p− q|, starting from p, in the direction given by the image of the tangent
vector q − p. This length and direction are invariant through the motion, and as i→ 0 the
curvature of this path approaches zero. Therefore, fi converges pointwise to a flat embedding
f0(S), obtained by the exponential map on the tangent plane of f(S) at p. Appending f0
to our continuous sequence of smooth embeddings fi for i ∈ (0, 1] gives us a continuous
sequence on i ∈ [0, 1], flat at i = 0 and equal to our starting embedding at i = 1, which
therefore shows that these two embeddings are reconfigurable to each other. J

This proof uses compactness to ensure that the surface has finite maximum curvature.
Non-compact surfaces can have self-similar embeddings, smooth everywhere except the limit
point, that are invariant under shrinking and re-expansion. For example, a shape like that of
Figure 2 can be wrapped onto a cone as an embedding into R3 that is smooth everywhere
except at the tip of the cone. Shrinking and rescaling fails to flatten this example, because
the point of the cone always retains its pointy shape. At this point, the normal curvatures
are infinite or undefined. On the other hand, omitting this one non-smooth point from the
shape would produce an embedding that is smooth everywhere, but not compact. The result
does not have finite maximum curvature; instead it has arbitrarily large normal curvatures
close to the cone point.

For polygonal embeddings we handle the same issue of avoiding self-similar embeddings
differently, using the requirement that these embeddings have finitely many connected linear
pieces.

I Theorem 2. Every polygonal embedding without interior vertices of a bounded spiral-shaped
domain has a continuous motion, through polygonal embeddings without interior vertices, to
a flat embedding.

Proof. The same idea as above comes close to working: compose the inward-spiraling
shrinking motion of the domain, the initial embedding f , an expansion of R3 centered at
the limit point of the motion, and a rotation of R3 that cancels any spinning motion the
inward-spiraling motion might have. However, the limit point p of the inward-spiraling
shrinking motion might be a point on a fold line of the polygonal embedding, or worse, it
might be a boundary point of S where multiple fold lines meet. In either of these cases, we
call p a folding point. When p is a folding point, there is not a unique tangent plane of f(S)
at p, and when the same composition can be made to have a limit, this limit will be folded
at p in the same way as it was in f(p) rather than being flat.

To address these issues, when p is a folding point of the embedding f(S), we choose one
of the polygonal faces incident to p to determine the tangent plane containing the reference
vector of the previous construction. Then as above we compose the inward-spiraling shrinking
motion of the domain, the initial embedding f , an expansion of R3 centered at the limit
point of the motion, and a rotation of R3 that cancels any spinning motion of this tangent



D. Eppstein 5:7

plane. The resulting composition defines a continuous motion over the half-open interval of
parameter values (0, 1], which can be extended with a well-defined limit at 0, a polygonal
folded state that has the same fold lines and fold angles as f(S) at p and is flat everywhere
else.

We distinguish three cases:
If p is not a folding point of the embedding f(S), then the previous proof applies directly.
If p belongs to a single fold line of the embedding f(S), then we can concatenate two
continuous motions. First we perform the motion from the previous proof that transforms
f(S) into a folded state that contains this fold line. Because this folded state has only
one fold line, it cannot self-intersect, and forms a valid polygonal embedding. Next, we
perform an additional continuous motion that linearly changes the angle of this fold from
its initial value to π (unfolded into a flat angle). Again, none of the intermediate states
of this second continuous motion can self-intersect.
In the remaining case, p is a boundary point of S that belongs to multiple fold lines
within S. In the limiting folded state, the only folds are on line segments containing p.
Such a folded line segment containing p must also be present in the original embedding, in
order for it to appear in the limiting folded state. If the shrinking component contained
any amount of rotation, this line segment through p would sweep out a topological disk
surrounding p, an impossibility for a point that belongs to multiple fold lines. Therefore,
the inward-spiraling shrinking motion must actually be the linear shrinking motion of a
star-shaped domain, with p in its kernel. The link of this folded state at p, the intersection
of f0(S) with a small sphere centered at p, is a polygonal chain consisting of arcs of great
circles. Because it remains invariant throughout the motion, it does not self-intersect.
Any two distinct points of S at distance d from p lie on distinct points of a scaled copy
of this link, on a sphere of radius d, and for this reason cannot coincide. Therefore, the
folded state at f0 is again a valid polygonal embedding.
By known results on the spherical carpenter’s rule problem, there exists a continuous
motion of the link, as a polygonal chain of fixed-length great-circle arcs on the sphere,
from its folded state to a completely flat state. This motion induces a continuous motion
of f0 to a flat-folded state [28]. Performing the continuous motion from f(S) to f0(S), and
then using this carpenter’s rule solution on the resulting single-vertex surface, produces a
combined continous motion from f(S) to a flat state. J

To apply the same method to flat foldings without interior vertices, we cannot use the
carpenter’s rule problem. A polygonal chain with fixed edge lengths, restricted to lie in a
one-dimensional space (a line) has no continuous freedom of motion: it has only a discrete
set of embeddings, and cannot move between them. In the same way, a flat folding of a
two-dimensional disk, constrained to stay flat and to keep its folds fixed within the disk,
cannot move. Therefore, to obtain an analogue of Theorem 2 for continuous motions that
remain within the class of flat foldings, we must allow the folds to “roll” across the disk. This
will happen automatically for some folds, in the first part of Theorem 2 using a continuous
shrinking motion, but that may leave us with a limiting folded state that still has one or
more folds through the center point of the motion. To handle these remaining folds, while
remaining in a flat-folded state, we use a one-dimensional version of Theorem 2:

I Lemma 3. Let P be a line segment, folded flat by a piecewise-isometry f : P → R with a
finite number of fold points and a consistent above-below relation for points with the same
image. Then there exists a continuous motion of flat foldings of P that transforms folding f
into an unfolded state.

CGT
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Figure 3 The unfolding process of Lemma 3, with p chosen as the left endpoint of the folded
line segment. Left: The shorter folded line segments obtained by applying the same piecewise-
isometry f to (top to bottom) the full line segment P = [0, 1] and its scaled images [0, i] for
i = 5/6, 2/3, 1/2, 1/3, 1/6. Right: the folded line segments of the same length as f(P ) generated by
expanding the left images by a factor of 1/i.

Figure 4 Two disks connected by a knotted band. This surface can be flattened by a continuous
motion of smooth embeddings.

Proof. Choose any point p of P that is not a fold point, and form a continuous family of
one-dimensional folded states of P , fi(P ) for i ∈ (0, 1], by scaling P by a factor of i centered
at p, applying f , and scaling the result by a factor of 1/i centered at f(p). When i becomes
less than the distance from p to the nearest fold, the result will be an unfolding of P , so this
provides a continuous transformation from f to an unfolding. J

Figure 3 demonstrates an example of this unfolding process, applied to the unit line
segment P = [0, 1], with p = 0, and with a piecewise-isometry f that maps P to a four-segment
folded image.

I Theorem 4. Every flat folding without interior vertices of a bounded spiral-shaped domain
has a continuous unfolding motion through foldings of the same type.

Proof. The proof follows the same outline as Theorem 2, combining shrinking and unshrinking
to reach a folded state in which all folds pass through the center p of the spiral shrinking
transformations. If the result has a single fold through p we roll this fold to the boundary of
S rather than changing its fold angle. If p lies on the boundary of the domain and belongs
to multiple fold lines, we apply Lemma 3 in place of the spherical carpenter’s rule. J
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Figure 5 Intermediate states of unknotting the surface from Figure 4

3 The knotted dumbbell

In this section we briefly examine an example shown in Figure 4. We include it to demonstrate
that the ability of bend lines to rotate in place can lead to unintuitive outcomes, highlighting
the need for careful and rigorous reasoning about the reconfiguration of smooth surfaces. In
this example, two large disks are connected by a short thin band. They are embedded into
R3 with the disks spread flat and the band tied into an open overhand knot. By varying
the dimensions of the example this knot can be made to be arbitrarily smaller than the disk
diameter. If the disks could be crumpled, it would nevertheless be easy to untie and flatten
this example, by crumpling the disks into small enough balls that they could be passed
through the knot, and then uncrumpling. However, our model of smooth surface embeddings
does not allow crumpling. In every smooth embedding, the center point of each disk lies in
a flat subset of the disk with large diameter: either a diameter of the disk, or a triangular
subset of the disk with the vertices of this triangle on the boundary of the disk.

Rolling up either disk around a diameter makes that diameter act like a rigid line segment.
Rolling both disks in this way can produce an embedding that closely resembles the locked
polygonal chain with long “knitting needles” at its ends from Figure 1 of Biedl et al. [4].
Although the rolled-up disks are thin enough to pass through the knotted band, they are
too long and rigid, in this form, to do so. Embedding a disk so that it has a large flat
triangular subset, instead of rolling it around a diameter, is even worse: in this case the flat
center region is too large to pass through the knot. Intuitive reasoning of this form suggests
that the embedding of the figure is locked, unable to be unfolded into a flat configuration.
However, this surface is unlocked! It can be unfolded through the following sequence of
transformations:

Let D be a diameter of one of the two disks, touching the boundary of the disk at its
attachment point p with the knotted band. Roll up the disk around D, starting at one of
the points of the disk that is farthest from D, and leaving the semicircle opposite that
point exposed on the outside of the roll.
Poke p into the hole made by the knotted band, so that if the rolled-up disk around D
were not rigid, it could pass through the hole and untie the knot (Figure 5, left). However,
because D is made rigid by the bending of the embedding as it rolls around D, only the
very end of diameter D near p can pass into the hole.
Continuously spin the parallel family of bend lines on the rolled-up disk, so that it rolls
up around a different diameter than D. Choose the direction of spin that causes p to
travel along the exposed semicircle along the rolled-up disk. As it does so, this will allow
more of the diameter of the rolled-up disk to poke through the hole in the knot (Figure 5,
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Figure 6 Left: A flat surface with two holes and a configuration that cannot be flattened.
Intuitively, the two interlocked loops prevent the rolled center region from unrolling, the bend lines
of the roll make it act like a rigid rod, and the length of this rod prevents the loops from being
pulled around its ends. Right: Cutaway view of the two loops and centerline of the rolled-up part of
the same surface, showing their topological equivalence to the Borromean rings.

right).
When the bend lines have spun on the disk through an angle of π, causing p to reach the
other end of the exposed semicircle, the rolled-up diameter will have traveled all of the
way through the hole in the knot, which will become unknotted.
Unroll the disk so that it lies flat with the rest of the surface.

Thus, although bend lines of a smoothly embedded surface are rigid, the underlying
pattern of these lines on the surface can change continuously, complicating the search for a
proof that a surface is locked.

4 The strapped rolled mat

Figure 6 depicts a smoothly-embedded unit square with two small loops on midpoints of
opposite sides, wrapped into a spiral roll with the loops interlocked. The cutaway view on
the right of the figure shows how the loops interlock. This rolled-up and interlocked surface
is topologically equivalent (ambient isotopic) to a flattened surface. As can be seen in the
cutaway view, the interlocking pattern is that of the Borromean rings, three unknotted loops
in space that cannot be separated from each other, in which any two of the loops become
unlinked if the third loop is removed. In the figure, the role of one of these three loops is
taken by the center of the spiral roll, which does not actually form a loop, so this embedding
is not topologically linked. From the arrangement of the loops in the cutaway view it is
possible to unlink it by pulling the right half of the red band to the right and up, around
the right end of the yellow spiral center, passing this part of the red band around the right
half of the blue band, and then passing the same part of the red band back to the right and
down around the right end of the yellow spiral center. This sequence of motions reverses the
front-back order of the two red-blue crossings on the right half of the red band, after which it
is straightforward to flatten the whole surface. We have also verified that this configuration
is topologically unlocked using a physical model of two rubber bands attached to a pen.

As a smoothly-embedded surface, Figure 6 is locked: it cannot be flattened while preserving
its geometry. To prove this, we use three interlocked properties of the embedding that, like
the Borromean rings, are interlinked: as long as any two of the properties remain valid, the
third one must remain valid as well, so none of the three properties can be the first to break
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Figure 7 Left: Bend lines for a deformed version of Figure 6 in which the (heavier) bend line
through the center of the square crosses the top and bottom sides of the square at distance 1/4 from
the sides. Right: For a bend line through the square’s center (shown at distance 3/10 from the sides),
the attachment point of the right loop must be in the red shaded lune, the intersection of two circles
(both centered at the bend endpoints and passing through the point where the loop is attached in
the unrolled view of the square), to avoid having greater distance to those endpoints than in the
flattened surface. Symmetrically, the attachment point of the left loop must be in the yellow shaded
lune. These lunes overlap only near the center of the square, forcing the two entangled loops to be
near that point. If the bend line were at distance 1/4 from the sides, the two lunes would touch but
not overlap, and for a bend line even closer to the sides, the lunes would become disjoint, preventing
the loops from being both near each other and having points of attachment within each lune.

in any continuous motion of the embedding. The first two properties are parameterized by a
parameter ε, which we will be able to make arbitrarily small by making the length of the
loops sufficiently small:

A. The two loops are bounded within distance ε of each other.
B. The nearest bend line on the square to its center point has distance ≤ ε to the center

point, and crosses the top and bottom sides of the square at distance ≥ 1/4− ε from its
left and right sides.

C. The nearest bend line on the square to its center point can be completed into a loop by
a curve, on a sphere with it as diameter, forming Borromean rings with the other two
loops.

The reason for the 1/4 in property B is that it is possible to deform Figure 6, keeping the
two loops interlocked in the center of the roll, so that the center bend line crosses the top
and bottom sides of the square at distance 1/4, as shown in Figure 7(left). However, as we
will prove, it is not possible to move this center bend line significantly farther from vertical.

I Lemma 5 (A ∧B ⇒ C). For all sufficiently small loop lengths δ and all sufficiently small
ε, continuous motion through states where A(ε) and B(ε) hold, starting from a state where
C holds, cannot reach a state where C does not hold.

Proof. Let b be the bend line of property B. Then (Figure 7, right) the attachment point p
of the right loop must lie within the intersection of two spheres centered at the endpoints of
b, with radii equal to the distances from p to those endpoints, because the embeddings we
consider are not allowed to increase distances. Similarly, the attachment point of the left loop
must lie within the intersection of another two spheres. By property A, these attachment
points must be near each other, and until C stops holding, they must also lie near line b.
This limits their nearby locations to points of line b that are far from its endpoints on the
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Figure 8 Borromean rings with links in separate spheres

square, so they cannot reach the sphere through the endpoints of b on which the connecting
curve of property C lies.

As the smooth embedding deforms continuously, the bend line nearest the center point
can change, but (as long as B continues to hold) only by small amounts, and the connecting
curve can be changed by similar small amounts to maintain property C. As the other two
loops cannot reach the sphere containing this curve, they cannot cross this curve (even
though it does not form a physical obstacle to them) and cannot change the knotted topology
that it forms with them. J

I Lemma 6 (A ∧ C ⇒ B). For all sufficiently small ε there exists a δ such that, for loop
lengths less than δ, continuous motion through states where A(2ε) and C hold, starting from
a state where B(ε) holds, cannot reach a state where B(ε) does not hold.

Proof. Let b be the bend line nearest the center of the square. While A and C hold, b must
pass through the Borromean link formed by it and the two loops, and so (if the center point
itself does not lie on a bend line) it must lie on a flattened part of the surface whose width is
at most proportional to the loop length. Therefore, b is close to the center point, as part of
property B demands. For a bend line that is close to the center point, the same reasoning
used in Figure 7 (right) and Lemma 5 shows that it must be at distance at least 1/4 − ε
from the left and right sides, for otherwise the two intervals on this bend line where the left
and right loop attachment points must be near would not intersect. J

I Lemma 7 (B ∧ C ⇒ A). For all sufficiently small ε there exists a δ such that, for loop
lengths less than δ, continuous motion through states where B(2ε) and C hold, starting from
a state where A(ε) holds, cannot reach a state where A(ε) does not hold.

Proof. By assumption C, the two loops of the surface and a third loop formed by bend line
b form Borromean rings, and by assumption B, line b is near vertical and near the square’s
center, forcing the attachment points of the two loops to be far from the endpoints of b.

Each loop of the surface has small diameter, so if the two loops could be far from each
other it would be possible to make two small spheres (of radius ε), one containing each loop.
The loop containing b lies on a straight line within each of these two spheres. Although
Borromean rings can have two loops in two disjoint spheres [29], as depicted in Figure 8,
the third Borromean ring cannot pass through either sphere as a straight line. If it could,
we could deform a loop within its sphere to a circle (as it is not pairwise linked with the
line passing through the sphere) and span it by a disk not crossed by the other two loops,
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impossible for the Borromean rings. This contradiction shows that the two loops cannot be
separated by a distance larger than ε, as stated in property A. J

These properties together prove that the surface of Figure 6 is locked: for versions of
this surface with short enough loops, it is impossible to deform it as a smoothly embedded
surface to its flattened state. The same is true for the same reasons for approximations to
this surface by polyhedral embeddings or flat foldings without interior vertices. As a result,
we have the following theorem:

I Theorem 8. For smooth embeddings, polyhedral embeddings without interior vertices, and
flat foldings without interior vertices, there exist flat surfaces with the topology of a disk with
two holes that are ambient isotopic to their flattened form but cannot reach that form by a
continuous sequence of folded states staying within the same class of folded states.

Proof. Choose a sufficiently small δ > 0 and ε > 0 for the lemmas above, and small enough
that Lemma 5 remains valid for 2ε in place of ε. A surface in the configuration of Figure 6
can be constructed with loop lengths ≤ δ and with properties A(ε), B(ε), and C, by rolling
the surface with vertical bend lines within a radius small enough to allow loops of these
lengths to wrap around it in that configuration. If this surface moves continuously, starting
from this initial configuration, all three properties must remain true; none can be the first to
fail (nor can two or three of these properties fail simultaneously). This is because, at the
instant any one or more of these properties first failed, the weaker properties A(2ε) and B(2ε)
would still be true. Thus, we would still have a continuous motion through configurations
in which which A(2ε) and B(2ε) remain true throughout the motion, starting from a state
where C is true. By Lemma 5, C must remain true at the end of such a motion. Then, by
Lemma 6 and Lemma 7, B(ε) and A(ε) (respectively) must also remain true at the end of the
motion, contradicting the assumption that it is possible for one or more of these properties
to have failed. J

5 Conclusions and open problems

We have shown that, for smooth embeddings, polyhedral embeddings without interior
vertices, and flat foldings without interior vertices, every spiral-shaped domain can be
flattened. However, there exist more complex planar shapes whose configuration spaces are
disconnected: they have locked embeddings that, although topologically equivalent, cannot
be flattened.

Is every topological disk flattenable? Can the method that we used to flatten Figure 4
be generalized to other disks? What about surfaces with a single hole? Additionally, we
have only investigated the existence of flattenings, but not their algorithmic complexity. For
polyhedral embeddings and flat foldings, how hard is it to determine whether a continuous
flattening exists? What about for smooth embeddings represented as a piecewise cylindrical
and conical surface?

A Recognizing polygonal spiral-shaped domains

In this section we provide a linear-time algorithm for recognizing the polygons that have
inward-spiraling shrinking motions. We defer this material to an appendix as it is somewhat
tangential to our main results on reconfiguration of surfaces.

The polar tangential angle of a curve, at any point, is the angle between the curve and a
ray from the origin through the point. The logarithmic spirals can be characterized as the
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Figure 9 A counterclockwise inward-spiraling motion whose spirals (red) have polar tangential
angle 72◦ (yellow), inside a polygon (thick black edges). According to Lemma 9, the center of the
motion must lie in the intersection of the shaded blue halfplanes.

curves for which all points have the same polar tangential angle, and this angle completely
determines the shape of the spiral. In an inward-spiraling shrinking motion, each point of
the set S traces out a logarithmic spiral, whose polar tangential angle θ is determined by
the motion: all points have the same angle and trace out spirals of the same shape. For the
motion to be continuously shrinking, it must be the case that all of these logarithmic spirals
remain entirely inside the given shape.

Although the general problem of finding inward-spiraling shrinking motions allows the
polar tangential angle to vary, we begin by characterizing the existence of such a motion for
a fixed choice of θ. As our next lemma shows, fixing θ significantly simplies this problem. It
allows the problem to be solved in terms of the non-emptiness of an intersection of halfplanes
(linear programming feasibility), much like the problem of recognizing star-shaped polygons.

I Lemma 9. For a given simple polygon P , an inward-spiraling shrinking motion with a
polar tangential angle θ and center c exists if and only if c lies within an intersection of
halfplanes, passing through the vertices of P . For a counterclockwise spiraling motion, the
halfplane through vertex v lies on a line rotated counterclockwise by angle θ from the edge of
P that is counterclockwise from v, as shown in Figure 9. For a clockwise spiraling motion,
symmetrically, the halfplane through vertex v lies on a line rotated clockwise by angle θ from
the edge of P that is clockwise from v. As a special case, when θ = 0, we get a halfplane
bounded by each edge of the polygon, without rotation; it makes no difference which of the
two vertices of the edge we associate to this halfplane.

Proof. If θ = 0, each halfplanes defines the region of the polygon within which its edge is
visible, and their intersection is the standard construction of the kernel of a star-shaped
polygon. Otherwise, we can assume that θ 6= 0. Each edge e of P , is associated with one
of the halfplanes of the lemma, passing through an endpoint v of e. If c is outside this
halfplane, then lines from c to points of e near v will cross v at a shallower angle than θ.
This implies that a spiral with polar tangential angle θ and center c, starting from a point
of e sufficiently near v, will start in a direction that takes it out of P , so we do not have a
valid inward-spiraling motion of P .
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On the other hand, if c is inside the halfplane for edge e, all line segments from c to e
will meet e at a wider angle than θ. This implies that all spirals that start from points of e
with polar tangential angle θ and center c will start in a direction that enters P . If this is
the case for all edges of P , then this motion initially takes the boundary of P to the interior
of P . This motion must be a valid inward-spiraling motion for all points of P (not just its
boundary points), and for all times until the polygon shrinks to the center of the motion
(not just initially), because there is no point of the boundary at which the spiral traced by
one of the points of P can cross back out of P . J

Based on standard properties of intersecting halfplanes, we have the following characteri-
zation of infeasible angles θ for the existence of an inward-spiraling shrinking motion.

I Observation 10. Suppose that, for a given polygon P and angle θ, no inward-spiraling
shrinking motion exists; that is, by Lemma 9, the halfplanes described by Lemma 9 have an
empty intersection. Then either two of these halfplanes have parallel boundary lines and an
empty intersection, or three of these halfplanes have pairwise non-parallel boundary lines and
an empty intersection.

Thus, to determine whether a polygon P has an inward-spiraling shrinking motion, we
need only determine whether there exists an angle θ for which every pair or triple of the
halfplanes of Lemma 9 has a non-empty intersection. We will consider the clockwise motions
separately from the counterclockwise ones, so that as we vary θ each halfspace rotates around
a single point (one of the endpoints of its defining polygon edge). As we will see, with this
restriction, each pair or triple of halfplanes has only a single critical angle, separating the
angles with empty intersection from the angles with non-empty intersection. The case of
pairs of halfplanes is simplest:

I Lemma 11. Let e and e′ be two edges of polygon P with the same slope and opposite
orientations. Then the halfplanes defined by e and e′ have at most one critical angle for clock-
wise inward-spiraling shrinking motions, and at most one critical angle for counterclockwise
inward-spiraling shrinking motions.

Proof. Suppose that we are considering counterclockwise motions, as depicted in Figure 9;
the case for clockwise motions is symmetric. For any polar tangential angle θ, the two
halfplanes defined for e and e′ in Lemma 9 will have parallel boundary lines, and will extend
in opposite directions from their lines. If we vary θ continuously, the position of these two
halfplanes will also vary continuously, rotating around the endpoints v and v′ of e and e′

respectively. Note that v and v′ are necessarily distinct vertices of P . By continuity, an
angle θ can be critical (separating angles with empty intersection from angles with nonempty
intersection) when the boundary lines for the two halfplanes for angle θ coincide. This can
only happen at the unique angle that causes these lines to pass through both v and v′. J

To prove a corresponding lemma about triples of non-parallel halfspaces, we need the
following observation about how pairs of non-parallel halfspaces meet each other.

I Observation 12. Let e and e′ be two edges of polygon P with different slopes, forming an
angle φ. Then, as θ varies (either for clockwise or counterclockwise motions), and as the
halfplanes defined from e and e′ rotate around their endpoints v and v′, their two boundary
lines maintain a constant angle φ, because both boundary lines are rotated by θ from e and
e′. The intersection of the two boundary lines lies on a circle through v and v′, the locus of
points forming angle φ with v and v′.

CGT



5:16 Locked and Unlocked Smooth Embeddings of Surfaces

Figure 10 Three circles that cross pairwise at three distinct points can only have a single triple
crossing.

Using this, we have:

I Lemma 13. Let e, e′, and e′′ be three edges of polygon P with three different slopes.
Then the halfplanes defined by e, e′, and e′′ have at most one critical angle for clockwise
inward-spiraling shrinking motions, and at most one critical angle for counterclockwise
inward-spiraling shrinking motions.

Proof. By continuity, θ can only be a critical angle when the three halfplanes defined by
e, e′, and e′′ with endpoints v, v′, and v′′ meet at a single point, which must be a point of
intersection of the three circles defined by Observation 12 for pairs of these three halfplanes.
However, two of these circles meet at each of the three points v, v′, and v′′. Because any two
circles in the plane can only cross each other twice, and one of these two potential crossing
points is already used up by the crossings at v, v′, and v′′, the three circles can only have
one triple point (Figure 10). J

To recognize polygons with (clockwise or counterclockwise) inward-spiraling shrinking
motions, we use the theory of LP-type problems. An LP-type problem can be defined by
a function f from finite subsets of a given finite set S to a totally-ordered set, with the
following properties:

For every two sets A and B satisfying A ⊂ B ⊂ S, f is monotonic: f(A) ≤ f(B).
For every two sets A and B satisfying A ⊂ B ⊂ S and every element e of S, f is local: if
f(A) = f(B) = f(A ∪ {e}), then these three evaluations of f also equal f(B ∪ {e}).

A set B ⊂ S is a basis if no other subset A ⊂ B has the same evaluation, and the combinatorial
dimension of the problem is the maximum cardinality of a basis. The goal of an LP-type
problem is to determine the value of f(S) using only evaluations of f on small sets, of size
related to the combinatorial dimension. When the dimension is O(1), this can be done using
O(n) evaluations of f on sets of size O(1).

The original algorithms for linear-time solution of LP-type problems, and the ones with
the best time dependence on the dimension, are randomized [24]. However, for geometric
optimization problems for which a subsystem oracle is available, it is possible to obtain a
deterministic O(n) time bound [7]. This subsystem oracle should take as input a subset A of
elements of S, and list all subsets of A that can be obtained from any basis B of S as{

e ∈ A | f(B) 6= f
(
B ∪ {e}

)}
.
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It must do this in an amount of time that depends polynomially on A, even though the
number of bases B of S used to define its output can be considerably larger. More precisely,
in order to obtain a deterministic linear time algorithm, the number of output sets should
be O(|A|D), and it should be possible to list them all in time O(|A|D+1), for some number
D known as the shatter dimension of the problem. Because of this required time bound,
the subsystem oracle does not have time to consult S as input, and may produce a larger
family of sets, ones that could be produced from a base of any problem of the same type
rather than from the specific problem defined by S. Not all LP-type problems of bounded
combinatorial dimension also have bounded shatter dimension and a fast subsystem oracle,
but when the shatter dimension is bounded, and a subsystem oracle can be constructed for
it, this is enough to lead to a deterministic linear time algorithm [7]. By the Sauer–Shelah
lemma, bounding the shatter dimension is equivalent to bounding the Vapnik–Chervonenkis
dimension of the same system of sets, defined as the largest input size m for which there exists
an input to the subsystem oracle that causes it to return all 2m subsets of its input [23, 25].

We now apply these concepts to our problem.

I Lemma 14. Let S consist of the edges of a given polygon P , and let ϕ(A) be the minimum
angle θ for which the (closed) halfplanes defined by Lemma 9 for counterclockwise inward-
spiraling shrinking motions, for the edges in A, have a non-empty intersection. Let f(A)
map A to the triple (ϕ(A), x, y) where (x, y) is the lexicographically minimum point in this
intersection, and order these triples lexicographically. Then f defines an LP-type problem of
dimension at most 3.

Proof. The range of angles [0, π] possible for ϕ, and the (closed) polygon P within which the
point (x, y) must lie both form compact sets, so by compactness f has a well-defined value.
The function f defined in this way is clearly monotonic: adding more halfplanes can only
eliminate some triples (ϕ, x, y) from being part of a non-empty intersection, and therefore
can increase or leave unchanged the minimum triple at which the intersection is non-empty.
It is local, because if a triple (ϕ, x, y) is the optimal triple for a non-empty intersection for A,
B, and A ∪ {e}, point (x, y) must belong to the halfplane defined for ϕ and e, and therefore
the triple remains optimal when this halfplane is added to those for B.

It remains to prove that the dimension is at most 3. Therefore, let B be any basis of
S; we must show that |B| ≤ 3. Let f(B) = (ϕ, x, y); then for every ϕ′ < ϕ, some subset A
of B with |A| ≤ 3 has an empty intersection of halfplanes, by Observation 10. Since there
are only finitely many choices of A, we can choose A so that it has an empty intersection
for values of ϕ′ arbitrarily close to ϕ; however, because (x, y) belongs to the intersection
of all the halfspaces for B for angle ϕ, the halfplanes in A for angle ϕ also have nonempty
intersection. Thus, ϕ is a critical angle for A. By Lemma 11 and Lemma 13, there can
be only one critical angle, so in particular it is impossible for the halfspaces for A to have
a non-empty intersection for any ϕ′ < ϕ. Therefore, f(A) = (ϕ, x′, y′) for some x′ and y′.
That is, A determines the optimal angle ϕ, although possibly not the optimal x and y for
that angle.

Because A is critical at angle ϕ, its halfplanes intersect to form either a line (if |A| = 2)
or a single point (if |A| = 3). In the |A| = 3 case, this point must be (x, y). In the |A| = 2
case, a single additional halfplane suffices to determine the lexicographically minimal point
(x, y). Thus, in either case, the triple (ϕ, x, y) is determined by three elements of B. Since B
was assumed to be a minimal subset determining this triple, |B| = 3. J

I Lemma 15. There exists a subsystem oracle for the LP-type problem defined in Lemma 14,
of shatter dimension ≤ 3.
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Proof. For a given set A, with |A| = m, each of the subsets {e ∈ A | f(B) 6= f(B ∪ {e})}
that should be returned from the subsystem oracle can be determined from the triple (θ, x, y)
with θ = ϕ(B) defined for B in Lemma 14. It is the subset of elements of A for which the
rotated halfplane with angle θ does not contain the point (x, y).

For any fixed choice of θ there are O(m2) of these sets. They can be obtained by rotating
a halfplane with angle θ for each element of A, drawing the arrangement of m lines bounding
the rotated halfplanes, and constructing one set for each face of the resulting arrangement of
lines, consisting of the halfplanes disjoint from that face. This arrangement of lines changes
combinatorially at the angles θ for which three of the rotated halfplane boundaries meet
at a point, which happens at O(m3) angles by Lemma 13. At these angles, one face of the
arrangement shrinks to a point and a different face appears. Away from these critical angles,
or in faces that do not appear or disappear at a critical angle, the subsets returned by the
subsystem oracle do not change.

Therefore, there are O(m3) of these subsets altogether. They can be obtained in O(m4)
time by constructing and sorting the critical angles for each triple of edges in the input set
A, using the sorted sequence of critical angles to trace through the sequence of combinatorial
changes to the arrangement of boundary lines of rotated halfplanes, and outputting for each
newly formed arrangement face a list of the halfplanes that are disjoint from that face. J

I Theorem 16. It is possible to determine whether a given polygon P has an inward-spiraling
shrinking motion, and if so to determine a feasible center and polar tangential angle for such
a motion, in time linear in the number of vertices of the polygon.

Proof. We apply a deterministic linear-time bounded-dimension LP-type algorithm two
times, once by Lemma 14 to determine whether it has a counterclockwise inward-spiraling
shrinking motion, and a second time by a symmetric argument to determine whether it has
a clockwise inward-spiraling shrinking motion. J
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