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Abstract
In this paper, we investigate crossing-free 3D morphs between planar straight-line drawings. We
show that, for any two (not necessarily topologically equivalent) planar straight-line drawings of an
n-vertex planar graph, there exists a crossing-free piecewise-linear 3D morph with O(n2) steps that
transforms one drawing into the other. We also give some evidence why it is difficult to obtain a
linear lower bound (which exists in 2D) for the number of steps of a crossing-free piecewise-linear
3D morph.
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1 Introduction

A morph is a continuous transformation between two given drawings of the same graph.
A morph is required to preserve specific topological and geometric properties of the input
drawings. For example, if the drawings are planar and straight-line, the morph is required
to preserve such properties throughout the transformation. A morphing problem often
assumes that the input drawings are “topologically equivalent”, that is, they have the same
“topological structure”. For example, if the input drawings are planar, they are required to
have the same rotation system (i.e., the same clockwise order of the edges incident to each
vertex) and the same walk bounding the outer face; this condition is obviously necessary
(and, if the graph is connected, also sufficient [7, 12]) for a morph to exist between the
given drawings. A linear morph is a morph in which each vertex moves along a straight-line
segment, all vertices leave their initial positions simultaneously, move at uniform speed,
and arrive at their final positions simultaneously. A piecewise-linear morph consists of a
sequence of linear morphs, called steps. A recent line of research culminated in an algorithm
by Alamdari et al. [3] that constructs a piecewise-linear morph with O(n) steps between any
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5:2 Morphing Planar Graph Drawings Through 3D

two topologically equivalent planar straight-line drawings of the same n-vertex planar graph;
this bound is worst-case optimal.

What can one gain by allowing the morph to use a third dimension? That is, suppose
that the input drawings still lie on the plane z = 0, does one get “better” morphs if the
intermediate drawings are allowed to live in 3D? Arseneva et al. [5] proved that this is the
case, as they showed that, for any two planar straight-line drawings of an n-vertex tree, there
exists a crossing-free (i.e., no two edges cross in any intermediate drawing) piecewise-linear 3D
morph between them with O(logn) steps. Later, Istomina et al. [6] gave a different algorithm
for the same problem. Their algorithm uses O(

√
n logn) steps, however it guarantees that

any intermediate drawing of the morph lies on a 3D grid of polynomial size.

Our contribution. We prove that the use of a third dimension allows us to construct a
morph between any two, possibly topologically non-equivalent, planar drawings. Indeed, we
show that O(n2) steps always suffice for constructing a crossing-free piecewise-linear 3D
morph between any two planar straight-line drawings of the same n-vertex planar graph;
see Section 3. Our algorithm defines some 3D morph “operations” and applies a suitable
sequence of these operations in order to modify the embedding of the first drawing into that
of the second drawing. The topological effect of our operations on the drawing is similar
to, although not the same as, that of the operations defined by Angelini et al. [4]. Both
the operations defined by Angelini et al. and ours allow to transform an embedding of a
biconnected planar graph into any other. However, while our operations are crossing-free
piecewise-linear 3D morphs, we see no easy way to directly implement the operations defined
by Angelini et al. (that concern topological drawings) as crossing-free piecewise-linear 3D
morphs. Later, we will point out a concrete difference. We stress that the input of our
algorithm consists of a pair of planar drawings in the plane z = 0; the algorithm cannot
handle general 3D drawings as input.

We then discuss the difficulty of establishing non-trivial lower bounds for the number
of steps needed to construct a crossing-free piecewise-linear 3D morph between planar
straight-line drawings; see Section 4. We show that, with the help of the third dimension,
one can morph, in a constant number of steps, two topologically equivalent drawings of a
nested-triangle graph (see Figure 14) that are known to require a linear number of steps in
any crossing-free piecewise-linear 2D morph [3].

Section 2 introduces some preliminaries and Section 5 concludes with some open problems.

2 Preliminaries

In this section, we give some definitions and preliminaries.
A 2D drawing of a graph maps each vertex to a point in the plane and each edge to a

Jordan arc in the plane between the points corresponding to its end-vertices. A 3D drawing
is defined analogously, just that points and arcs are embedded in space, rather than in
the plane. A 2D drawing is planar if no two edges intersect except, possibly, at common
end-vertices. Analogously, a 3D drawing is crossing-free if no two edges intersect except,
possibly, at common end-vertices. A drawing is straight-line if each edge is represented by a
straight-line segment. A planar drawing is strictly convex if each face is delimited by a strictly
convex polygon, i.e., by a simple polygon whose internal angles are strictly less than 180◦.

Throughout this paragraph, every considered graph is assumed to be connected. Two
planar drawings of a graph are (topologically) equivalent if they have the same rotation
system and the same clockwise order of the vertices along the boundary of the outer face.
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(b) The embedding obtained as a flip of E

Figure 1 Illustration for the flip of an embedding E of a graph G. In this example, {5, 6} is a
separation pair (and a split pair). The three split components with respect to {5, 6} are the edge
(5, 6), the path (5, 8, 6), and the graph obtained from G by removing the vertex 8 and the edges
(5, 6), (5, 8), and (8, 6).
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Figure 2 Illustration for Theorem 1. (a) An internally-triconnected plane graph G. (b) A strictly
convex polygon P that represents the cycle delimiting the outer face of G. (c) A strictly convex
drawing of G that coincides with P when restricted to the vertices and edges on the boundary of
the outer face of G.

An embedding is an equivalence class of planar drawings of a graph. A plane graph is a
planar graph with an embedding; when we talk about a planar drawing of a plane graph, we
always assume that the embedding of the drawing is that of the plane graph. The flip of an
embedding E produces an embedding in which the clockwise order of the edges incident to
each vertex and the clockwise order of the vertices along the boundary of the outer face are
the opposite of the ones in E ; see Figure 1.

A graph is biconnected (triconnected) if the removal of any vertex (resp. of any two vertices)
leaves the graph connected. A pair of vertices of a biconnected graph G is a separation pair
if its removal disconnects G. A split pair of G is a separation pair or a pair of adjacent
vertices. A split component of G with respect to a split pair {u, v} is the edge (u, v) or a
maximal subgraph Guv of G such that {u, v} is not a split pair of Guv; see again Figure 1.
A biconnected plane graph G is internally-triconnected if every separation pair {u, v} is such
that: (i) u and v are incident to the outer face of G; (ii) every split component with respect
to {u, v} that is different from the edge (u, v) contains edges incident to the outer face of G.

Throughout the paper, we use some results from the literature, which we state here
for the reader’s convenience. We start with a theorem on the existence of strictly convex
drawings with prescribed outer face; see also Figure 2.

I Theorem 1 (Hong and Nagamochi [10]; Tutte [13]). Let G be an internally-triconnected
plane graph, and let P be a strictly convex polygon representing the cycle delimiting the outer
face of G. It is possible to construct a strictly convex drawing of G that coincides with P
when restricted to the vertices and edges on the boundary of the outer face of G.

CGT



5:4 Morphing Planar Graph Drawings Through 3D

Graph flip

u
v

u
v

(a) Oper. 1 w.r.t. {u, v}

Outer face change

f

f

(b) Oper. 2 w.r.t. f

Component flip

1 2 3 4 5

1 234 5

(c) Oper. 3 w.r.t. G2,3,4

Component skip

1 2 3 4 5

1 23 4 5

(d) Oper. 4 w.r.t. G2

Figure 3 The four operations that are the building blocks for our piecewise-linear morphs.

For two drawings Γ1 and Γ2 of a graph, we denote by 〈Γ1,Γ2〉 the linear morph between
Γ1 and Γ2. We now state a result about 2D morphs.

I Theorem 2 (Alamdari et al. [3]). Let G be an n-vertex plane graph. There exists an O(n)-
step crossing-free piecewise-linear 2D morph between any two planar straight-line drawings
of G.

3 An Upper Bound

This section is devoted to a proof of the following theorem.

I Theorem 3. For any two planar straight-line drawings (not necessarily with the same
embedding) of an n-vertex planar graph, there exists a crossing-free piecewise-linear 3D morph
between them with O(n2) steps.

We first assume that the given planar graph G is biconnected and describe four operations
(Section 3.1) that allow us to morph a given 2D planar straight-line drawing of G into another
one, while achieving some desired change in the embedding. We then show (Section 3.2)
how these operations can be used to construct a crossing-free piecewise-linear 3D morph
between any two planar straight-line drawings of G. Finally, we remove our biconnectivity
assumption (Section 3.3).

3.1 3D Morph Operations
We begin by describing four operations that morph a given planar straight-line drawing into
another with a different embedding; see Figure 3.

I Lemma 4 (Operation 1: Graph flip). Let G be a biconnected plane graph, let u and v be
two distinct vertices of G, and let Γ be a planar straight-line drawing of G. Then there exists
a 2-step crossing-free piecewise-linear 3D morph from Γ to a planar straight-line drawing Γ′′
of G whose embedding is the flip of the embedding that G has in Γ; moreover, u and v do not
move during the morph.

Proof. We implement Operation 1, which proves the lemma, as follows. Refer to Figure 4.
Let Π be the plane z = 0, which contains Γ. Let Π′ be the plane that is orthogonal to Π
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Figure 4 Illustration for Operation 1. The drawings Γ and Γ′′ are gray, while Γ′ is black. Vertex
trajectories in the linear morphs 〈Γ, Γ′〉 and 〈Γ′, Γ′′〉 are represented by arrowed lines.

and contains the line `uv through u and v. Let Γ′ be the image of Γ under a clockwise
rotation around `uv by 90◦. Note that Γ′ is contained in Π′. Now let Γ′′ be the image of Γ′
under another clockwise rotation around `uv by 90◦. Note that Γ′′ is a flipped copy of Γ
and is contained in Π. Consider the linear morphs 〈Γ,Γ′〉 and 〈Γ′,Γ′′〉. In each of them,
every vertex travels on a line that makes a 45◦-angle with both Π and Π′, and all these lines
are parallel. Due to this, due to the linearity of the morphs, and due to the fact that, in
both morphs, pre-image and image are planar, all vertices stay coplanar during both linear
morphs. (As in a true rotation, the intermediate drawing lies on a plane that contains `uv
and rotates around it; unlike in a true rotation, the size of the intermediate drawing changes
continuously.) In particular, every intermediate drawing is crossing-free, and u and v (as
well as all the points on `uv) are fixed points. J

I Lemma 5 (Operation 2: Outer face change). Let G be a biconnected plane graph, let Γ
be a planar straight-line drawing of G, and let f be a face of Γ. Then there exists a 4-step
crossing-free piecewise-linear 3D morph from Γ to a planar straight-line drawing Γ′′′ of G
whose embedding is the same as the one of Γ, except that the outer face of Γ′′′ is f .

Proof. We implement Operation 2, which proves the lemma, using the stereographic pro-
jection. Let Π be the plane z = 0, which contains Γ. Let S be a sphere that contains Γ
in its interior and is centered on a point in the interior of f ; see Figure 5. Let Γ′ be the
3D straight-line drawing obtained by projecting the vertices of G from their positions in Γ
vertically to the Northern hemisphere of S. Let Γ′′ be determined by projecting the vertices
of Γ′ centrally from the North Pole of S to Π. Both projections define linear morphs: 〈Γ,Γ′〉
and 〈Γ′,Γ′′〉. Indeed, any intermediate drawing is crossing-free since the rays along which we
project are parallel in 〈Γ,Γ′〉 and diverge in 〈Γ′,Γ′′〉, and there is a one-to-one correspondence
between the points in the pre-image and in the image. Since the morph also inverts the
rotation system of Γ′′ with respect to Γ, we apply Operation 1 to Γ′′, which, within two
morphing steps, flips Γ′′ and yields our final drawing Γ′′′. J

Consider a split pair {u, v} of G and a drawing Γ of G in which u and v are incident to
the outer face, as in Figure 6a. Let G1, . . . , Gk be the split components of G with respect

CGT
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f Γ

Γ′

f ′′Γ′′

Figure 5 The first two steps of Operation 2 are projections. First, the vertices of the drawing Γ
(purple) are projected vertically to a hemisphere that is centered on some interior point of a given
inner face f . This yields a new drawing Γ′ (black). From there, the vertices are projected centrally
from the North Pole back to the plane z = 0 resulting in a drawing Γ′′ (blue), where f ′′, the image
of f , is the outer face.

u

v

(a) Drawing Γ of G. (b) Drawing Ψ of H; polygon Pin is blue, Pout is red.

Figure 6 Illustration for Operation 3 with i = 2 and j = 4: Construction of Ψ from Γ.

to {u, v} in clockwise order around u such that G1 and Gk are incident to the outer face
of Γ. We say that a pair (i, j) with 1 ≤ i ≤ j ≤ k is good if it has the following property:
If G contains the edge (u, v), then this edge is one of the components Gi, . . . , Gj .1

Operation 3 allows us to flip the embedding of the components Gi, . . . , Gj (and to
incidentally reverse their order), while leaving the embedding of the other components of G
unchanged. This is formalized in the following.

I Lemma 6 (Operation 3: Component flip). Let G be a biconnected plane graph, and let
{u, v} be a split pair of G. Let Γ be a planar straight-line drawing of G in which u and v are
incident to the outer face. Let G1, . . . , Gk be the split components of G with respect to {u, v}
in clockwise order around u such that G1 and Gk are incident to the outer face of Γ. Let
(i, j) be a good pair.

Then there exists an O(n)-step crossing-free piecewise-linear 3D morph from Γ to a planar
straight-line drawing Γ′ of G in which, for ` ∈ {i, . . . , j}, the embedding of G` is the flip of its

1 This is a point where our operations differ from the ones of Angelini et al. [4]. Indeed, their flip operation
applies to any sequence of components of G, while ours does not.
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Figure 7 Triangulating the exterior of Pout (only Pout and the triangles incident to vertices
of Pout are shown). This can create chords with respect to Pout (see (x, y) in (a)), which are then
treated as in (b).

embedding in Γ, while the embedding of G` is the same as in Γ, for ` ∈ {1, . . . , i−1, j+1, . . . , k}.
The order of G1, . . . , Gk around u in Γ′ is G1, . . . , Gi−1, Gj , Gj−1, . . . , Gi, Gj+1, . . . , Gk.

Proof. In order to implement Operation 3, which proves the lemma, ideally we would like to
apply Operation 1 to the drawing of the graph Gi∪Gi+1∪· · ·∪Gj in Γ. However, this would
result in a drawing that may contain crossings between edges of Gi ∪Gi+1 ∪ · · · ∪Gj and
edges of the rest of the graph. Thus, we first move Gi ∪Gi+1 ∪ · · · ∪Gj , via a crossing-free
piecewise-linear 2D morph, into a polygon that is symmetric with respect to the line through
u and v and that does not contain any edges of the rest of the graph. Applying Operation 1
to Gi ∪Gi+1 ∪ · · · ∪Gj now results in a drawing in which Gi ∪Gi+1 ∪ · · · ∪Gj still lies inside
the same symmetric polygon, which ensures that the edges of Gi ∪Gi+1 ∪ · · · ∪Gj do not
cross the edges of the rest of the graph.

We now describe the details of Operation 3; refer to Figure 6b. We start by drawing a
triangle (a, b, c) surrounding Γ. Then we insert in Γ two polygons Pin and Pout with O(n)
vertices, which intersect Γ only at u and v; the vertices of G1, . . . , Gi−1, Gj+1, . . . , Gk (except
u and v) and a, b, and c lie outside Pout; the vertices of Gi, . . . , Gj (except u and v) lie inside
Pin; Pout contains Pin; and the two paths of Pin connecting u and v have the same number of
vertices. We let Pin and Pout “mimic” the boundary of the drawing of Gi ∪Gi+1 ∪ · · · ∪Gj
in Γ.

We triangulate the exterior of Pout; that is, we triangulate each region inside (a, b, c) and
outside Pout bounding a face of the current drawing. If this introduces a chord (x, y) with
respect to Pout, as in Figure 7a, let (x, y, w) and (x, y, z) be the two faces incident to (x, y);
we subdivide (x, y) with a vertex and connect this vertex to w and z, as in Figure 7b. We
also triangulate the interior of Pin. Let Ψ be the resulting planar straight-line drawing of this
plane graph H. Let Cout and Cin be the cycles of H represented by Pout and Pin in Ψ, let
Hout be the subgraph of H induced by the vertices that lie outside or on Pout, and let Hin
be the subgraph of H induced by the vertices that lie inside or on Pin. Note that Hout is a
triconnected plane graph, as each of its faces is delimited by a 3-cycle, except for one face,
which is delimited by a cycle Cout without chords. Further, Hin is an internally-triconnected
plane graph, as each of its internal faces is delimited by a 3-cycle, while the outer face is
delimited by a cycle Cin which may have chords.

We now construct another planar straight-line drawing of H, as follows. Construct a
strictly convex drawing Λout of Hout by means of Theorem 1, as in Figure 8a. Let PΛ

out be
the strictly convex polygon representing Cout in Λout. As in Figure 8b, plug a strictly convex
drawing PΛ

in of Cin in the interior of PΛ
out (except at u and v) so that PΛ

in is symmetric with

CGT



5:8 Morphing Planar Graph Drawings Through 3D

(a) Drawing Λout of Hout. (b) Drawing Λout ∪ P Λ
in of Hout ∪ Cin.

(c) Drawing Λ of H. (d) Drawing Φ of H.

Figure 8 Illustration for Operation 3.

respect to the line through u and v. This can be achieved because the two paths of Cin
connecting u and v have the same number of vertices and because PΛ

out is strictly convex,
hence the segment uv lies in its interior, and thus also a polygon PΛ

in sufficiently close to
uv does. Finally, plug into Λout ∪ PΛ

in a strictly convex drawing Λin of Hin in which Cin is
represented by PΛ

in, as in Figure 8c; this drawing can be constructed again by Theorem 1.
This results in a planar straight-line drawing Λ of H.
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We now describe the morph that occurs in Operation 3. We first define a piecewise-linear
morph 〈Ψ, . . . ,Φ〉 from Ψ to another planar straight-line drawing Φ of H, as the concatenation
of two piecewise-linear morphs 〈Ψ, . . . ,Λ〉 and 〈Λ, . . . ,Φ〉. The morph 〈Ψ, . . . ,Λ〉 is an O(n)-
step crossing-free piecewise-linear 2D morph obtained by Theorem 2. The morph 〈Λ, . . . ,Φ〉
is an O(1)-step piecewise-linear 3D morph that is obtained by applying Operation 1 to Λin
only, with u and v fixed; Figure 8d shows the resulting drawing Φ. In order to prove that
Operation 3 defines a crossing-free morph, it suffices to observe that, during 〈Λ, . . . ,Φ〉,
the intersection of Hin with the plane on which Λout lies is (a subset of) the segment uv,
which lies in the interior of a face of Λout; hence, Hin does not intersect Hout (except in u
and v). That no other crossings occur during 〈Ψ, . . . ,Φ〉 is a consequence of Theorem 2
(which ensures that 〈Ψ, . . . ,Λ〉 has no crossings) and of the properties of Operation 1 (which
ensure that 〈Λ, . . . ,Φ〉 has no crossings among the edges of Hout). Finally, Operation 3 is
the piecewise-linear morph 〈Γ, . . . ,Γ′〉 obtained by restricting the morph 〈Ψ, . . . ,Φ〉 to the
vertices and edges of G. Note that the effect of Operation 1, applied only to Λin, is the one
of flipping the embeddings of Gi, . . . , Gj (and also reversing their order around u), while
leaving the embeddings of G1, . . . , Gi−1, Gj+1, . . . , Gk unaltered, as claimed. J

Operation 4 works in a setting similar to the one of Operation 3; see Figure 9a. Operation 4
allows one component to “skip” the other components of G, so to be incident to the outer
face. This is formalized in the following.

I Lemma 7 (Operation 4: Component skip). Let G, G1, . . . , Gk, {u, v}, and Γ be defined as
in Operation 3. If the edge (u, v) exists, then G1 must be (u, v). Let i ∈ {2, . . . , k}.

Then there exists an O(n)-step crossing-free piecewise-linear 3D morph from Γ to a planar
straight-line drawing Γ′ in which, for ` ∈ {1, . . . , k}, the embedding of G` is the same as in Γ,
and the clockwise order of the split components around u is G1, . . . , Gi−1, Gi+1, . . . , Gk, Gi,
where G1 and Gi are incident to the outer face.

Proof. In order to implement Operation 4, which proves the lemma, we would like to first
move Gi vertically up from the plane z = 0 to the plane z = 1, to then send Gi “far away” by
modifying the x- and y-coordinates of its vertices, and to finally project Gi vertically back to
the plane z = 0. There are two complications to this plan, though. The first one is given by
the vertices u and v, which belong both to Gi and to the rest of the graph. When moving u
and v on the plane z = 1, the edges incident to them are dragged along, which may result in
these edges crossings each other. The second one is that there may be no far away position
that allows the drawing of Gi to be vertically projected back to the plane z = 0 without
introducing any crossings. This is because the rest of the graph may be arbitrarily mingled
with Gi in the initial drawing Γ. As in Operation 3, convexity comes to the rescue. Indeed,
we first employ a crossing-free piecewise-linear 2D morph which makes the boundary of the
outer face of G convex and moves Gi into a convex polygon. After moving Gi vertically up
to the plane z = 1, sending Gi far away can be simply implemented as a scaling operation,
which ensures that the edges incident to u and v do not cross each other during the motion
of Gi on the plane z = 1 and that projecting Gi vertically back to the plane z = 0 does not
introduce crossings with the edges of the rest of the graph.

We now provide the details of Operation 4, which works slightly differently depending on
whether the edge (u, v) exists and not. We first describe the latter case; see Figure 9b. We
insert two polygons Pin and Pout with O(n) vertices in Γ. As in Operation 3, they intersect Γ
only at u and v, with Pin inside Pout (except at u and v). All the vertices of Gi (except u
and v) lie inside Pin and all the vertices of G1, . . . , Gi−1, Gi+1, . . . , Gk (except u and v) lie

CGT
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u

v

(a) Drawing Γ of G. (b) Drawing Ψ of H. (c) Drawing Λout ∪P Λ
in

of Hout ∪ Cin.
(d) Drawing Λ of H.

Figure 9 Illustration for Operation 4: Pin is blue, Pout is red, and Pext is purple.

outside Pout. We also insert in Γ a polygon Pext, with O(n) vertices, that intersects Γ only
at u and v, and that contains all the vertices of G and Pout (except u and v) in its interior.

We now triangulate the region inside Pext and outside Pout, without introducing chords
for Pout. We also triangulate the interior of Pin without introducing chords for Pin. Let Ψ
be the resulting planar straight-line drawing of a plane graph H. Let Cout, Cin, and Cext
be the cycles of H represented by Pout, Pin, and Pext in Ψ, respectively. Let Hout be the
subgraph of H induced by the vertices that lie outside or on Pout. Similarly, let Hin be
the subgraph of H induced by the vertices that lie inside or on Pin. Note that Hout is an
internally-triconnected plane graph and Hin is a triconnected plane graph.

We now construct another planar straight-line drawing of H, as follows. First, construct
a strictly convex drawing Qext of Cext such that the angle of Qext at u (and the angle at v)
is cut by the segment uv into two angles both smaller than 90◦. Next, construct a strictly
convex drawing Λout of Hout in which Cext is represented by Qext, by means of Theorem 1.
Let PΛ

out be the strictly convex polygon representing Cout in Λout. As in Figure 9c, plug
a strictly convex drawing PΛ

in of Cin in the interior of PΛ
out, except at u and v, so that the

path πuv that is traversed when walking in clockwise direction along Cin from u to v is
represented by the straight-line segment uv. Finally, plug into Λout∪PΛ

in a convex drawing Λin
of Hin in which the outer face is delimited by PΛ

in, by means of Theorem 1. This results in a
planar straight-line drawing Λ of H; see Figure 9d.

We now describe the morph that occurs in Operation 4. We first define a piecewise-
linear morph 〈Ψ, . . . ,Φ〉 from Ψ to an “almost” planar straight-line drawing Φ of H, as
the concatenation of two piecewise-linear morphs 〈Ψ, . . . ,Λ〉 and 〈Λ, . . . ,Φ〉. The morph
〈Ψ, . . . ,Λ〉 is an O(n)-step crossing-free piecewise-linear 2D morph obtained by Theorem 2.
Translate and rotate the Cartesian axes so that, in Λ, the y-axis passes through u and v
and u has a smaller y-coordinate than v. The morph 〈Λ, . . . ,Φ〉 is a 3-step piecewise-linear
3D morph defined as follows.

The first morphing step 〈Λ,Λ′〉 moves all the vertices of Hin, except for u and v, vertically
up, to the plane z = 1. As the projection to the plane z = 0 of every intermediate drawing
of H in 〈Λ,Λ′〉 coincides with Λ, the morph is crossing-free.
The second morphing step 〈Λ′,Λ′′〉 is such that Λ′′ coincides with Λ′, except for the
x-coordinates of the vertices of Hin, which are all multiplied by the same real value s > 0.
We choose the value s large enough so that, in Λ′′, the following statements hold true:
(i) The absolute value of the slope of the line through u and through the projection to the
plane z = 0 of any vertex of Hin not in πuv is smaller than the absolute value of the slope
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(a) Drawing obtained
by restricting Λ to G.

(b) Drawing Γ′ obtained by restricting Φ to G.

Figure 10 Illustration for Operation 4: Construction of Γ′ from the restriction of Λ to G.

of every edge incident to u in Hout; and (ii) a symmetric statement holds with respect
to v instead of u. This morph is crossing-free since it just scales the drawing of Hin,
while leaving the drawing of Hout unaltered. Intuitively, this is the step where Gi “skips”
Gi+1, . . . , Gk (although Gi − {u, v} still lies on a different plane than Gi+1, . . . , Gk).
The third morphing step 〈Λ′′,Φ〉 moves the vertices of Hin vertically down, to the plane
z = 0. This morphing step may actually have crossings in its final drawing Φ. However,
the property on the slopes guaranteed by the second morphing step ensures that the
only crossings are those involving edges incident to vertices of πuv different from u and v,
which do not belong to G. Hence, the restriction of 〈Λ′′,Φ〉 to G is a crossing-free morph.

As in Operation 3, the actual crossing-free piecewise-linear morph 〈Γ, . . . ,Γ′〉 is obtained
by restricting the morph 〈Ψ, . . . ,Φ〉 to G, see Figure 10.

We now discuss the case that the edge (u, v) exists; then G1 is such an edge. Now Pin
and Pout surround all the components G1, . . . , Gi, and not just Gi; consequently, Hin
comprises G1, . . . , Gi. The description of Operation 4 remains the same, except for two
differences. First, PΛ

in is strictly convex; in particular, the path πuv is not represented by a
straight-line segment, so that the edge (u, v) lies in the interior of PΛ

in. Second, in the 3-step
piecewise-linear 3D morph 〈Λ,Λ′,Λ′′,Φ〉, not all the vertices of Hin are lifted to the plane
z = 1, then scaled, and then projected back to the plane z = 0, but only those of Gi. The
arguments for the fact that the restriction of such a morph to G is crossing-free remain the
same. J

3.2 3D Morphs for Biconnected Planar Graphs
We now describe an algorithm that constructs an O(n2)-step piecewise-linear morph between
any two planar straight-line drawings Γ and Φ of the same n-vertex biconnected planar graph
G. It actually suffices to construct an O(n2)-step piecewise-linear morph from Γ to any
planar straight-line drawing Λ of G with the same embedding as Φ, as then an O(n)-step
piecewise-linear morph from Λ to Φ can be constructed by means of Theorem 2. And even
more, it suffices to construct an O(n2)-step piecewise-linear morph from Γ to any planar
straight-line drawing Ψ of G that has the same rotation system as Λ, as then an O(1)-step
piecewise-linear morph from Ψ to Λ can be constructed by means of Operation 2.

As proved by Di Battista and Tamassia [8], starting from a planar graph drawing (in our
case, Γ), one can obtain the rotation system of any other planar drawing (in our case, Φ) of
the same graph by: (i) suitably changing the permutation of the components in some parallel
compositions; that is, for some split pairs {u, v} that define three or more split components,
changing the clockwise (circular) ordering of such components; and (ii) flipping the embedding
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Figure 11 How the flip the embedding of a split component K in a drawing Γ, which is sketched
in (a). We first apply Operation 2 to morph Γ so that its outer face is incident to u and v, as in (b).
In this illustration, we have that G2 and G4 respectively coincide with K and with the edge (u, v),
hence ` = 2 and m = 4. Applying Operation 3 with i = ` = 2 and j = m = 4 flips the embedding of
G2, G3, and G4, as in (c). Applying Operation 3 again with i = ` = 2 and j = m− 1 = 3 leaves
only the embedding of K flipped with respect to the original embedding, as in (d).

for some rigid compositions; that is, for some split pairs that define a maximal split component
that is biconnected, flipping the embedding of the component. Thus, it suffices to show how
to implement these modifications by means of Operations 1–4 from Section 3.1. We first
take care of the flips, not only in the description, but also algorithmically: All the flips are
performed before all the permutation rearrangements since the flips may cause some changes
regarding the permutations, which we fix later.

Let {u, v} be a split pair that defines a maximal biconnected split component K of G, and
suppose that we want to flip the embedding of K in Γ. (The drawing we deal with undergoes
modifications, however for the sake of simplicity we always denote it by Γ.) The drawing Γ is
shown in Figure 11a. Note that K is not the edge (u, v), as otherwise we would not need to
flip its embedding. Further, K does not properly contain (u, v) since (u, v) would be a split
component by itself. However, (u, v) may belong to E(G)− E(K). Apply Operation 2 to
morph Γ so that the outer face becomes any face incident to u and v, as in Figure 11b. Let
G1, . . . , Gk be the split components of G with respect to {u, v}, in clockwise order around u,
where G1 and Gk are incident to the outer face. Let ` ∈ {1, . . . , k} be such that G` = K.
We distinguish two cases, depending on whether the edge (u, v) belongs to G or not.

If the edge (u, v) does not belong to G, then we simply apply Operation 3, with i = j = `,
in order to morph Γ to flip the embedding of G` = K.
If (u, v) belongs to G, then let m ∈ {1, . . . , k} be such that Gm is (u, v). Assume that
` < m, the other case is symmetric. Apply Operation 3 with i = ` and j = m, in order to
morph Γ such that the embeddings of G`, G`+1, . . . , Gm will be flipped as in Figure 11c.
If we again let G1, . . . , Gk denote the split components of G with respect to {u, v}, in
clockwise order around u, where G1 and Gk are incident to the outer face, G` is now the
edge (u, v) and Gm is K. Apply Operation 3 a second time, with i = ` and j = m− 1, in
order to morph Γ such that the embeddings of G`, G`+1, . . . , Gm−1 will be flipped back
to the embeddings they originally had; see Figure 11d. As desired, only the embedding of
K = Gm is actually flipped.

Flipping the embedding of K is hence done in O(n) morphing steps. Since there are O(n)
maximal biconnected split components whose embedding may need to be flipped, all such
flips are performed in O(n2) morphing steps.
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Let {u, v} be a split pair of G that defines three or more split components, and suppose
that we want to change the clockwise (circular) ordering of such components around u to
a different one. If the edge (u, v) exists, then apply Operation 2 to morph Γ so that the
outer face becomes the one to the left of (u, v), when traversing (u, v) from u to v; otherwise,
apply Operation 2 to morph Γ so that the outer face becomes any face incident to u and
v. Let G1, . . . , Gk be the split components of G with respect to {u, v}, in clockwise order
around u, where G1 and Gk are incident to the outer face; note that, if (u, v) exists, then
it coincides with G1. Let G1, Gσ(2), Gσ(3), . . . , Gσ(k) be the desired clockwise order of the
split components of G with respect to {u, v} around u; since we are only required to fix a
clockwise circular order of these components, we can assume G1 to be the first component in
the desired clockwise linear order of such components around u that starts at the outer face.

We apply Operation 4 with index σ(2), then again with index σ(3), and so on until the
index σ(k). The first j applications make Gσ(2), Gσ(3), . . . , Gσ(j+1) the last j split components
of G with respect to {u, v} in the clockwise linear order of the components around u that
starts at the outer face. Hence, after the last application we obtain the desired order. Each
application of Operation 4 requires O(n) morphing steps, hence changing the clockwise order
around u of the k split components of G with respect to a split pair {u, v} takes O(nk)
morphing steps, where k is the number of split components with respect to {u, v}. Since the
total number of split components with respect to every split pair of G that defines a parallel
composition is in O(n) [8], this sums up to O(n2) morphing steps. This concludes the proof
of Theorem 3 for biconnected planar graphs.

3.3 3D Morphs for General Planar Graphs
We start by reducing the general problem to the one in which G is connected. Suppose
that G has multiple connected components G1, . . . , Gk. Let Γ1 and Γ2 be the two given
planar straight-line drawings of G between which we want to construct a crossing-free
piecewise-linear 3D morph. For i = 1, . . . , k and for j = 1, 2, let Φi,j be the restriction of Γj
to Gi.

Assume that, for i = 1, . . . , k, we know how to construct a crossing-free piecewise-linear
3D morphMi = 〈Φi,1, . . . ,Φi,2〉; how to constructMi will be explained later in the section.
Assume that the entire morphMi happens within a ball with diameter Wi. Clearly, this is
true for a sufficiently large value Wi > 0. Let W = maxi=1,...,kWi.

Note that we cannot just construct a morph between Γ1 and Γ2 as the union of the
morphsMi, as distinct connected components of G would collide with one another during
such a morph. Hence, our strategy is to move each connected component to a distinct
horizontal plane. These planes are sufficiently far apart from each other so that morphs of
individual components do not interfere with one another.

More in detail, we proceed as follows. For j = 1, 2, let 〈Γj ,Ψj〉 be the crossing-free
piecewise-linear 3D morph that moves the drawing Φi,j of Gi in Γj vertically up to the
plane Pi with equation z = 3iW. Now distinct connected components of G lie on different
horizontal planes, both in Ψ1 and in Ψ2. Moreover, each connected component Gi lies on
the same plane, namely Pi, in Ψ1 as in Ψ2.

We can now obtain a morph 〈Ψ1, . . . ,Ψ2〉 as the union of the morphsMi (the morph
Mi, rather than between the drawings Φi,1 and Φi,2, actually occurs between the drawings
Ψi,1 and Ψi,2 which are the vertical translation of Φi,1 and Φi,2 to the plane Pi). Since the
distance between any two planes Pi is larger than or equal to 3W and since each morph
〈Ψi,1, . . . ,Ψi,2〉 happens within a ball with diameter W , distinct connected components of G
do not collide with each other during 〈Ψ1, . . . ,Ψ2〉. Thus, 〈Γ1,Ψ1, . . . ,Ψ2,Γ2〉 is the desired
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(a) Drawing Γ;
block B is yellow.

(b) Triangulating Γ into a
drawing Ψ.

(c) Changing the outer
face of Ψ.

(d) Drawing Γ′.

Figure 12 Illustration for the morph that allows the path (v, p, w) to be inserted in Γ.

crossing-free piecewise-linear 3D morph between Γ1 and Γ2.
Notice that the number of steps of such a morph is two plus the number of steps needed

to morph a single connected component of G, as distinct connected components of G are
morphed simultaneously during the morph 〈Ψ1, . . . ,Ψ2〉.

We now assume that G is connected; let Γ and Φ be the prescribed planar straight-line
drawings of G we want to morph. We are going to augment Γ and Φ to planar straight-line
drawings of a biconnected planar graph and then apply the algorithm of Section 3.2. The
augmentation is done in k − 1 steps, where k is the number of biconnected components of G.
At each step, the augmentation decreases by one the number of biconnected components of
G by employing O(n) morphing steps. Thus, the total number of morphing steps used by
the augmentation is in O(n2). We now describe how a single augmentation step is done (the
drawing Γ and the graph G we deal with undergo some modifications, however for the sake
of simplicity we always denote them by Γ and G).

Let B be a biconnected component of G that contains a unique cut-vertex u (that is,
B is a leaf of the block-cut-vertex tree of G [9, 11]). Let (u, v) and (u,w) be two edges
that are consecutive in the clockwise order of the edges incident to u in Φ and such that
(u, v) ∈ E(B) and (u,w) /∈ E(B). We are going to augment G with a length-2 path (v, p, w),
thus decreasing the number of biconnected components of G. Such a path can be planarly
inserted in Φ, because of the way v and w were defined. However, v and w are not necessarily
incident to the same face of Γ, as in Figure 12a; in order to allow for a planar insertion of
the path (v, p, w), we are going to let v and w share a face by suitably morphing Γ.

Triangulate Γ into a planar straight-line drawing Ψ of a maximal planar graph H, as
in Figure 12b, and then apply Operation 2 to morph Ψ in O(1) steps to change its outer
face into any of the two faces incident to the edge (u,w), as in Figure 12c; let q be the third
vertex incident to such a face. By means of Theorem 1, we construct a planar straight-line
drawing Λ of H in which the cycle (u,w, q) delimiting the outer face is represented by a
triangle whose angle at u is smaller than 45◦. An O(n)-step crossing-free piecewise-linear
2D morph from Ψ to Λ can be obtained by Theorem 2. Restricting such morphs to G
provides an O(n)-step crossing-free piecewise-linear morph from Γ to a planar straight-line
drawing Γ′ of G contained inside a triangle (u,w, q) whose angle at u is smaller than 45◦, as
in Figure 12d.

Translate and rotate the Cartesian axes so that the origin is at u and the positive y-half-
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axis cuts the interior of the face that is to the right of the edge (u, v), when traversing such
an edge from u to v. We are now ready to make u and v incident to the same face in Γ′.
This is done in three morphing steps.

The first morphing step moves all the vertices of B, except for u, vertically up, to the
plane z = 1.
The second morphing step scales the x and y-coordinates of all the vertices of B by a
vector (α, β), where α and β are two positive real values satisfying the following properties:
(i) β is sufficiently large so that every vertex in V (B) − {u} has a y-coordinate larger
than the one of every vertex in V (G)− V (B); and (ii) α is large enough so that the slope
of every edge (u, r) of B is either between 0◦ and 45◦ (if r has positive x-coordinates) or
between 135◦ and 180◦ (if r has negative x-coordinates).
The third morphing step moves all the vertices of B vertically down, back to the plane
z = 0.

u

w

v

p

Figure 13 Illustration for the morph that allows the path (v, p, w) to be inserted in Γ. Scaling B

up so that it surrounds the rest of the graph.

The first two morphing steps are clearly crossing-free. The third one is also crossing-free,
because of the properties that are ensured by the choice of α and β in the second morphing
step. Now v and w are incident to the same face not only in Φ, but also in Γ′. Thus, they
can be connected via a length-2 path (v, p, w); the new vertex p can be inserted close to u,
both in Γ′ and in Φ, as in Figure 13. Now B and the biconnected component w used to
belong to have been merged into a single biconnected component, as desired.

4 Discussion: Lower Bounds

Though the algorithm of Section 3 uses a quadratic number of steps, we are not aware of
any super-constant lower bound for crossing-free piecewise-linear 3D morphs between planar
straight-line graph drawings. The nested-triangles graph provides a linear lower bound on
the number of steps required for a crossing-free piecewise-linear 2D morph, as proved by
Alamdari et al. [3]. Specifically, let Tk be the pair of drawings of the graph that consists
of k + 1 nested triangles, connected by three paths that are spiraling in the first drawing
and straight in the second drawing, as in Figure 14 for k = 3. The lower bound of Alamdari
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et al. [3] relies on the fact that the innermost triangle or the outermost triangle makes a
linear number of full turns in any crossing-free piecewise-linear 2D morph between the two
drawings.

Figure 14 The lower bound example of Alamdari et al. [3].

Even in 3D, it may seem that a linear number of linear morphs is required. However, the
extra dimension allows us to perform the “turns” in parallel by “flipping” several triangles at
once. The key operation is to morph T6 in a constant number of steps without moving the
innermost and outermost triangles, as shown in Figure 15 and animated in [1, 2]. Then for
any k, we can construct a crossing-free piecewise-linear 3D morph between the two drawings
in T6k in a constant number of steps by performing the morph of Figure 15 in parallel for the
k nested copies of T6. Observe that in this morph the (6i+ 1)-th outermost triangle does
not move, for any i = 0, . . . , k. Each morphing step of T6 avoids a small tetrahedron above
and below its innermost triangle, allowing different nested copies of T6 to morph in parallel
without intersecting.

The above example gives hope that the number of steps required to construct a crossing-
free piecewise-linear 3D morph between any two given planar straight-line graph drawings
could be far smaller than quadratic – potentially even constant. However, it is unclear how
to generalize our procedure.

The approach of Figure 15 relies on the sequence of nested triangles to be independent,
as we can untangle each one locally without affecting the others. This is not necessarily
the case. For instance, the example in Figure 16 shows a tree of nested triangles that are
recursively twisted by 120◦ at every level. Here, each path in the tree has the same structure
as a nested-triangles graph thus, in total, it requires Ω(logn) morphing steps in 2D. It is
unclear to us how to handle the dependencies between different tree branches.

5 Open Problems

Our research raises several other open problems. An immediate one is to reduce our quadratic
upper bound for the number of steps that are needed to construct a crossing-free piecewise-
linear 3D morph between any two planar straight-line graph drawings. Extending the result
of Arseneva et al. [5], we ask whether planar graph families richer than trees, e.g., outerplanar
graphs and series-parallel graphs, admit crossing-free piecewise-linear 3D morphs with a
sub-linear number of steps.

We have given an example of two topologically equivalent planar straight-line drawings
of a triconnected graph that can be untangled in 3D using only O(1) steps. Still we think
that there are examples of planar graphs with topologically equivalent drawings where this
is not the case. More specifically, we suspect that in 3D, as in 2D, a linear number of steps
is sometimes necessary.

If the initial configuration can also make use of the third dimension, the initial configuration
can be an arbitrary knot, and the final configuration can be a regular polygon in the plane.
Then, a morph exists only if the initial configuration is the unknot, but this condition may
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(a) (b) (c)

(d) (e) (f)

Figure 15 Morphing T6 in 3D without moving the innermost and outermost triangles. Orange
arrows show the vertices that exchange position in the next step. Empty / large disks indicate that
a vertex lies below / above the plane containing the initial drawing. The drawing obtained by the
morph is of the type of the right drawing in Figure 14.

not be sufficient because our edges must remain straight during the morph. That is, it may
be necessary to insert extra vertices (e.g. by subdividing edges) before a (topological) unknot
can actually be unknotted by one of our morphs. It is unclear whether extra vertices are
necessary, and whether polynomially many extra vertices are sufficient.
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