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Abstract
We consider spanning trees of n points in convex position whose edges are pairwise non-crossing.
Applying a flip to such a tree consists in adding an edge and removing another so that the result
is still a non-crossing spanning tree. Given two trees, we investigate the minimum number of flips
required to transform one into the other. The naive 2n− Ω(1) upper bound stood for 25 years until
a recent breakthrough from Aichholzer et al. yielding a 2n− Ω(log n) bound in the worst case. We
improve this result with a 2n− Ω(

√
n) upper bound, and we strengthen and shorten the proofs of

several of their results.
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1 Introduction

We fix a set P = {v1, . . . , vn} of n points in the plane in convex position (and we assume
that v1, . . . , vn appear in this order on the convex hull of P ). We consider spanning trees of
the complete graph whose set of vertices is P and whose edges are straight line segments. If
no two edges of such a spanning tree intersect (except maybe on their endpoints), we say
that it is non-crossing. A flip removes an edge of a non-crossing spanning tree and adds
another one so that the result is again a non-crossing spanning tree of P . A flip sequence is a
sequence of non-crossing spanning trees such that consecutive spanning trees in the sequence
differ by exactly one flip. We study the problem of transforming a non-crossing spanning
tree into another via a sequence of flips.

Given two non-crossing spanning trees T1 and T2, observe that the size |T1∆T2| of the
symmetric difference between their sets of edges may decrease by at most 2 when applying a
flip, hence |T1∆T2|/2 flips are required (note that this quantity can be as large as n when T1
and T2 have no common edge). Hernando et al. [3] proved that there exist two trees T1 and
T2 such that any flip sequence needs at least 3

2 n − 5 flips. Regarding upper bounds, Avis
and Fukuda [2] proved that there always exists a flip sequence between T1 and T2 using at
most 2n− 4 flips. This simple 2n− Ω(1) upper bound was not improved in the last 25 years
until a recent work of Aichholzer et al. [1] who improved the upper bound into 2d−Ω(log d),
where d is the number of edges of T1 not appearing in T2. In the worst case d = n, and this
yields a 2n− Ω(log n) bound. They also proved that there exists a flip sequence of length
3
2 n− h if the two spanning trees share h edges and one of them is a path.
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8:2 A Note on the Flip Distance between Non-crossing Spanning Trees

In this paper, we improve the worst case upper bound of the recent result [1] by proving
that there exists a transformation of length at most 2n − Ω(

√
n) (Corollary 4). We also

provide a short proof of the existence of a transformation of length 3
2 n when one tree is a

path (Corollary 8), which reproves in a shorter way a result from [1] in the worst case. We
relax this result by showing that if one of the trees contains an induced path of length t then
there exists a transformation of length 2n− t

3 (Corollary 7).
Finally, we prove that if one of the trees is a nice caterpillar (whose precise definition

will be given in Section 2), the shortest transformation has length at most 3
2 n (Corollary 5).

This is remarkable since, as far as we know, in all the examples where 3
2 n− Ω(1) flips are

needed, at least one of the two non-crossing spanning trees is a nice caterpillar [3, 1]. So our
statement essentially ensures that, if 3

2 n is not the tight upper bound, then the spanning
trees between which a larger transformation is needed should be constructed quite differently.

We think that all our partial results give additional credit to the following conjecture:

I Conjecture 1. There is a flip sequence between any pair of non-crossing spanning trees of
length at most 3

2 n.

All our proofs are simple, self-contained, and mainly follow from simple applications of a
lemma stated at the beginning of the next section.

2 Results

Recall that all along the paper we consider a set of n points V = {v1, . . . , vn} in convex
position appearing in that order. A leaf of a tree T is a vertex of degree one. An internal
node of T is a vertex that is not a leaf. A border edge is an edge of the convex hull, i.e. vivi+1
for some i. Given two points vi, vj , V \ {vi, vj} has two parts (possibly empty), namely
vi+1, . . . , vj−1 and vj+1, . . . , vn, v1 . . . , vi−1. Finally, we say that t edges a1b1, . . . , atbt (that
may share endpoints) are parallel if a1, a2, . . . , at, bt, bt−1, . . . , b1 appear in that order in the
cyclic ordering of V . If moreover all their endpoints are pairwise distinct, then we say the
edges are strictly parallel.

Let us first prove the following claim:

B Claim 2. Let T be a non-crossing spanning tree and e be a border edge. Then we can
add e in T with an edge-flip without removing any border edge (except if T only contains
border edges).

Proof. Adding e to T does not create any crossing, since e belongs to the convex hull of P .
Moreover, the unique cycle in T ∪ {e} must contain at least an edge e′ that does not belong
to the set of border edges, since otherwise T ∪ {e} is precisely the convex hull of P . J

All our results follow from the following simple but very useful lemma:

I Lemma 3. Let i 6 n. Let T1, T2 be two non-crossing spanning trees of P such that T1
contains all the edges vjvj+1 for j < i and T2 has no edge vkv` with k > i and ` > i. Then
there exists a flip sequence between T1 and T2 of length at most |T1∆T2|/2.

Proof. Let us denote by X the subset of points {v1, . . . , vi} and EX the set of edges vjvj+1
for every j < i.

Let us first prove that there is a transformation from T2 into a tree T ′2 containing all
the edges of EX where the size of the symmetric difference decreases at each step. Indeed,
assume that T2 does not contain an edge e of EX . Since T1 contains all edges in EX , the
cycle obtained by adding e to T2 contains an edge f in T2 \T1 (and thus in T2 \EX). Flipping
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e with f in T2 decreases the size of the symmetric difference between T1 and the resulting
tree T ∗2 by 2. We repeat this operation between T1 and T ∗2 until all the edges of EX have
been added. Denote by T ′2 the resulting tree. Observe that T ′2 consists in a path (containing
the set of edges EX) with leaves attached to it. In particular, all the vertices of V \X are
leaves.

We now prove that, as long as T1 6= T ′2, one can find a good flip in T1, i.e. such
that after applying it to T1, the resulting tree T ′1 still contains all the edges of EX , and
|T ′1∆T ′2| = |T1∆T ′2| − 2. The conclusion immediately follows by iterating this argument on
T ′1 until we reach T ′2.

v1

vj

vi

vb

va

vn

vc

ea

e

eb

(a) The flip e→ eb is always good.
Moreover, vbvc is not external,
while vavb is.

v1

vi1

vi2

v`1

v`2

vi

vj2

vj1

vn

(b) The flip vi1vj1 → vj1v`1 is
not good but vi2vj2 → vj2vj′ is.

Figure 1 Dotted edges denote the path EX , edges of T ′
2 are dashed and edges of T1 are full.

Let us distinguish two cases:

Case 1. All the edges of T1 \ T ′2 have both endpoints in V \X (see Figure 1 (a)).
An edge e of T1 \ T ′2 is external if there is no other edge uv in T1 \ T ′2 such that the

endpoints of e not in {u, v} do not lie in the same part as X in V \ {u, v}.
Since T1 contains all the edges of EX , if T1 \ T ′2 is non empty, then it should contain

an external edge e = vavb. Since va and vb are leaves of T ′2 and all the edges of T ′2 have an
endpoint in X, there are two edges ea, eb linking X to respectively va and vb. By symmetry,
we may assume that the path from vb to X in T1 goes through va, and in particular T1 does
not contain eb (since it contains all the edges of EX). Therefore flipping vavb with eb in T1
yields a tree. Moreover it is non-crossing since if two edges of the resulting tree cross, one of
them should be eb. Since eb is in T ′2 and, by assumption, all the edges of T1 between X and
V \X are in T ′2, the other edge f should have both endpoints in V \X. This is impossible
since e is external. So, e→ eb is a good flip, which concludes this case.

Case 2. T1 \ T ′2 contains an edge between X and V \X (see Figure 1 (b)).
Let vi1vj1 with i1 < j1 be the edge of T1 \ T ′2 between X and V \X such that i1 is minimum
and, with respect to that condition, j1 > i is maximum. Recall that vj1 is a leaf of T ′2, and
let v`1 be its neighbor in X in T ′2.

Since T1 contains EX , exchanging vi1vj1 with v`1vj1 in T1 still yields a tree. If it is a
good flip, then we are done. Otherwise, there must be an edge vi2vj2 of T1 crossing v`1vj1

and this edge is not in T ′2 (since it crosses v`1vj1 ∈ T ′2). Moreover, since both vi1vj1 and
vi2vj2 are in T1, they are parallel.

CGT



8:4 A Note on the Flip Distance between Non-crossing Spanning Trees

So either i2 6 i1 and j2 > j1 or i2 > i1 and j2 6 j1 (and at least one of the inequalities is
strict). Our choices of i1, j1 ensures that the first case is impossible. So i2 > i1 and j2 6 j1.

We now conclude with the following iterative argument. Since vj2 is a leaf of T ′2 connected
to X, let v`2 be its neighbor in X. Note that `2 > `1 since vj1v`1 and vj2v`2 are parallel in
T ′2. If exchanging vi2vj2 and vj2v`2 is a good flip, the conclusion follows. Otherwise an edge
vi3vj3 of T1 \ T ′2 is crossing vj2v`2 . And vi1vj1 , vi2vj2 and vi3vj3 are parallel since `2 > `1
and vi3vj3 cannot cross vi2vj2 .

The repetition of this argument either provides a good flip or extracts a sequence
vi1vj1 , . . . , vir

vjr
of parallel edges in T1. Since T1 contains n− 1 edges, the process must stop

after at most n− 1 steps and yields a good flip, which concludes the proof. J

In the rest of the paper, we derive corollaries from that lemma. First, we provide a
generic upper bound, which improves the one from [1] in the worst case:

I Corollary 4. There exists a flip sequence of length at most 2n− Ω(
√

n) between any pair
of non-crossing spanning trees.

Proof. Let T1, T2 be two non-crossing spanning trees. Partition arbitrarily the set P into√
n sections of size

√
n. If one section does not contain any edge of T2 with both endpoints

in it, then we use Claim 2 to add to T1 all the border edges outside of this section (in n−
√

n

flips), and then apply Lemma 3 to transform the resulting tree into T2 with n additional
flips.

Therefore, we can assume that each section contains both endpoints of an edge in T2.
In particular, the shortest edge contained in each section is a border edge (since T2 is a
non-crossing spanning tree). Applying again n −

√
n times Claim 2 to all the non-border

edges of T2 and n times to those of T1, we can transform both trees into a tree only containing
border edges. This yields a flip sequence between T1 and T2 in at most 2n−

√
n + 1 steps

(since any two trees only containing border edges can be obtained from each other via a
single edge-flip). J

A caterpillar is a tree such that the set of internal nodes induces a path. It is moreover
nice if:

it is a star, or
it has exactly two internal nodes vw such that the two parts of V \ {v, w} are the open
neighborhood of v (except w) and the open neighborhood of w (except v), or
it has at least three internal nodes such that, for every set of three consecutive internal
nodes u, v, w, the neighbors of v are exactly u, w and all the points in the part of V \{u, w}
which does not contain v (see Figure 2 for an illustration).

As far as we know, in all the examples where 3
2 n− Ω(1) flips are needed, at least one of

the two non-crossing spanning trees is a nice caterpillar [3, 1].

I Corollary 5. Let T1, T2 be non-crossing spanning trees such that T2 is a nice caterpillar.
There exists a flip sequence between T1 and T2 of length at most 3

2 n.

Proof. Let us denote by w1, . . . , wk the set of internal nodes of T2. Up to renaming, we
can assume that w1 = v1 and denote by i the index such that vi = wk. Up to reversing the
ordering of the vertices, we may also assume that i 6 n/2. Applying Claim 2 at most i times,
we can add all edges vjvj+1 for j < i to T1 and obtain a tree T ′1.

Since T2 is a nice caterpillar, {v1, . . . , vi} contains every other wj and all the leaves of
T2 attached to the wj ’s in {vi, . . . , vn}. Therefore, every edge of T2 has an endpoint in
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u

v

w

x

u

v

x

w

Figure 2 Two caterpillars, whose internal path uvwx is highlighted in bold. The left one is not
nice (v does not satisfy the desired property), while the right one is.

{v1, . . . , vi} hence T ′1 and T2 satisfy the hypothesis of Lemma 3 and we can transform T ′1
into T2 in at most n steps for a total of n + i 6 3n/2 steps. J

Using Lemma 3, one can also prove the following that will lead to another interesting
corollary:

I Lemma 6. Let T1, T2 be two non-crossing spanning trees such that T2 has t parallel edges
(resp. strictly parallel edges). There exists a flip sequence between T1 and T2 of length at
most 2n− t+1

2 (resp. 2n− t).

Proof. Let t be the maximum number of parallel edges in T2. Let e1 = a1b1, . . . , et = atbt

be t parallel edges of T2. We say that vertices between bt and b1 (resp. a1 and at) in the
cyclic ordering in the section that does not contain a1 (resp. b1) are bottom vertices (resp.
top vertices). Let b be the number of bottom vertices.

Since T2 is non-crossing, for every i 6 t− 1, there is a shortest path Qi from an endpoint
of ei to an endpoint of ei+1 in T2. Note that this path might be reduced to a single vertex if
the two edges share an endpoint (we say that Qi is trivial). Observe that the same trivial
path may appear several times if several edges share the same endpoint. By maximality
of t, there cannot be an edge in Qi between a top vertex and a bottom vertex. Therefore
we can classify the t − 1 paths Qi in two types: Qi is a top path if it only contains edges
between top vertices and a bottom path otherwise. By symmetry, we can assume that at least
w := (t− 1)/2 paths are top paths.

We claim that we can transform T2 into a tree T ′2 such that all the edges of the tree T ′2
have at least one endpoint between a1 and at in at most b− w steps.

Denote by Ai the set of top vertices between ai and ai+1 and by Bi the set of bottom
vertices between bi+1 and bi. Recall that by maximality of t there is no edge between Ai and
Bi, except aibi and ai+1bi+1. If Qi is a non-trivial bottom path, we can remove one edge
of the bottom part and add one edge in the top part to get a top path. We then aim at
removing all edges of Qi and connect all their endpoints in Bi to ai. To this end, we say that
an edge vpvq with p < q with both endpoints in Bi is exterior if no edge vrvs distinct from
vpvq with both endpoints in Bi satisfies r 6 p < q 6 s. One can easily remark that we can
iteratively replace an exterior edge vpvq by an arc connecting vp or vq to ai until no edge
with both endpoints in Bi remains. So we can ensure that no edge with both endpoints in
Bi remains in at most |Bi| − 1 steps (−2 if Qi was initially a top path). If we sum over all

CGT



8:6 A Note on the Flip Distance between Non-crossing Spanning Trees

the sections, since
∑

i(|Bi| − 1) = b− 1 and we remove 1 additional flip for each of the w top
paths, this process yields a tree T ′2 where all the edges have at least one endpoint between a1
and at in b− w − 1 flips.

Now we can transform T1 into a tree T ′1 that contains all border edges except maybe
between bottom vertices in at most n− b steps by Claim 2. Finally, we may apply Lemma 3
to transform T ′1 into T ′2 in at most n steps, which in total gives a flip sequence of length at
most (b− w − 1) + (n− b) + n = 2n− w − 1, as claimed.

In the strictly parallel case, let t′ be the maximum number of strictly parallel edges.
Observe that each non-trivial top path must contain a border edge in T2 (and then in
T ′2). Note that there are at most t − t′ trivial top paths, hence T ′2 and T ′1 share at least
w − t + t′ border edges, and by Lemma 3, the flip sequence from T ′1 to T ′2 costs at most
n − w + t − t′. The total length of the flip sequence between T1 and T2 is thus at most
(b− w − 1) + (n− b) + (n− w + t− t′) = 2n− 2w − 1 + t− t′ = 2n− t′. J

Lemma 6 immediately implies:

I Corollary 7. Let T1, T2 be two non-crossing spanning trees such that T1 contains a subpath
of length t. There exists a flip sequence between T1 and T2 of length at most 2n− t

3 .

Proof. Let Q := x1, . . . , xt+1 be a subpath of T1 of length t. For every 2 6 i 6 t − 1, we
say that the edge xixi+1 of Q is separating if xi−1 and xi+2 are separated by xi, xi+1 (i.e.
exactly one of xi, xi+1 appear between xi−1 and xi+2 in the cyclic ordering of the vertices).
We say that the edge is a series edge otherwise. By convention, the first and last edges of
Q are both series and separating. Denote by s (resp. p) the number of series edges (resp.
separating edges), so that s + p = t + 2.

Observe that the set of separating edges of Q are parallel, hence Lemma 6 ensures that
there exists a flip sequence of length at most a = 2n− p−1

2 . Moreover, if xixi+1 is a series edge
then there is a border edge in T1 between xi and xi+1 (in the part that does not contain the
vertices xi−1 and xi+2). So there exists also a flip sequence of length at most b = 2n− s + 1
from T1 to T2 (passing through a border tree) by Claim 2. Now observe that 2a + b = 6n− t,
hence either a or b must be at most 6n−t

3 , which concludes. J

In the case of paths, we can actually improve Corollary 7 by finding a flip sequence of
length at most 3

2 n. This reproves in a shorter way a result of [1] the worst case scenario,
namely when the two trees do not share any edge1.

I Corollary 8. Let T1, T2 be two non-crossing spanning trees such that T2 is a path. There
exists a flip sequence between T1 and T2 of length at most 3

2 n.

Proof. Let x1, . . . , xn be the vertices of the path T2 (in order). Deleting x1 and xn in the
cyclic ordering separates the set of vertices into two parts called the top and the bottom parts.
We consider that x1 and xn appear in both parts. Observe that all the edges of T2 are either
border edges (between two consecutive vertices of the top or the bottom part) or traversing
edges with one endpoint in each part.

Let us denote by nt (resp. nb) the number of vertices of the top part (resp. bottom part)
including x1 and xn. Note that nt + nb = n + 2. Let us denote by bt, bb the number of border
edges in T2 respectively in the top and bottom parts.

1 The result of [1] ensures that there exists a transformation whose length is at most 3
2 · |T2 \ T1| when T2

is a path.
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We add all the nt − 1 border edges of the top part to T1 by Claim 2. Then, we transform
in T2 all the bb border edges of the bottom part into traversing edges as follows: flip each
bottom border edge xixi+1 with xjxi+1 where j is the largest index of a top vertex less than
i. Observe that the two resulting trees share bt common border edges in the top part, and
satisfy the hypothesis of Lemma 3. Therefore there is a flip sequence of length at most n− bt

between them, and thus we can transform T1 in T2 with at most (nt − 1) + bb + (n− bt) flips.
Exchanging the top and bottom parts in the previous argument yields another flip sequence

of length (nb − 1) + bt + (n− bb). The sum of these lengths is at most 2n + nb + nt − 2 = 3n

which ensures one of the two sequences has length at most 3
2 n, which completes the proof. J
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