A Note on the Flip Distance between Non-crossing Spanning Trees

Nicolas Bousquet \boxtimes (
Univ. Lyon, Université Lyon 1, CNRS, LIRIS UMR CNRS 5205, F-69621, Lyon, France
Valentin Gledel \square (
Department of Mathematics and Mathematical Statistics, Umeå University, Sweden
Jonathan Narboni \square (ㄷ)
Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland

Théo Pierron \square (

Univ. Lyon, Université Lyon 1, CNRS, LIRIS UMR CNRS 5205, F-69621, Lyon, France

Abstract

We consider spanning trees of n points in convex position whose edges are pairwise non-crossing. Applying a flip to such a tree consists in adding an edge and removing another so that the result is still a non-crossing spanning tree. Given two trees, we investigate the minimum number of flips required to transform one into the other. The naive $2 n-\Omega(1)$ upper bound stood for 25 years until a recent breakthrough from Aichholzer et al. yielding a $2 n-\Omega(\log n)$ bound in the worst case. We improve this result with a $2 n-\Omega(\sqrt{n})$ upper bound, and we strengthen and shorten the proofs of several of their results.

Keywords and phrases spanning tree, flip distance, reconfiguration
Digital Object Identifier 10.57717/cgt.v2i1.36
Funding ANR project GrR (ANR-18-CE40-0032)
Jonathan Narboni: National Science Center of Poland grant 2019/34/E/ST6/00443

1 Introduction

We fix a set $P=\left\{v_{1}, \ldots, v_{n}\right\}$ of n points in the plane in convex position (and we assume that v_{1}, \ldots, v_{n} appear in this order on the convex hull of $\left.P\right)$. We consider spanning trees of the complete graph whose set of vertices is P and whose edges are straight line segments. If no two edges of such a spanning tree intersect (except maybe on their endpoints), we say that it is non-crossing. A flip removes an edge of a non-crossing spanning tree and adds another one so that the result is again a non-crossing spanning tree of P. A fip sequence is a sequence of non-crossing spanning trees such that consecutive spanning trees in the sequence differ by exactly one flip. We study the problem of transforming a non-crossing spanning tree into another via a sequence of flips.

Given two non-crossing spanning trees T_{1} and T_{2}, observe that the size $\left|T_{1} \Delta T_{2}\right|$ of the symmetric difference between their sets of edges may decrease by at most 2 when applying a flip, hence $\left|T_{1} \Delta T_{2}\right| / 2$ flips are required (note that this quantity can be as large as n when T_{1} and T_{2} have no common edge). Hernando et al. [3] proved that there exist two trees T_{1} and T_{2} such that any flip sequence needs at least $\frac{3}{2} n-5$ flips. Regarding upper bounds, Avis and Fukuda [2] proved that there always exists a flip sequence between T_{1} and T_{2} using at most $2 n-4$ flips. This simple $2 n-\Omega(1)$ upper bound was not improved in the last 25 years until a recent work of Aichholzer et al. [1] who improved the upper bound into $2 d-\Omega(\log d)$, where d is the number of edges of T_{1} not appearing in T_{2}. In the worst case $d=n$, and this yields a $2 n-\Omega(\log n)$ bound. They also proved that there exists a flip sequence of length $\frac{3}{2} n-h$ if the two spanning trees share h edges and one of them is a path.

In this paper, we improve the worst case upper bound of the recent result [1] by proving that there exists a transformation of length at most $2 n-\Omega(\sqrt{n})$ (Corollary 4). We also provide a short proof of the existence of a transformation of length $\frac{3}{2} n$ when one tree is a path (Corollary 8), which reproves in a shorter way a result from [1] in the worst case. We relax this result by showing that if one of the trees contains an induced path of length t then there exists a transformation of length $2 n-\frac{t}{3}$ (Corollary 7).

Finally, we prove that if one of the trees is a nice caterpillar (whose precise definition will be given in Section 2), the shortest transformation has length at most $\frac{3}{2} n$ (Corollary 5). This is remarkable since, as far as we know, in all the examples where $\frac{3}{2} n-\Omega(1)$ flips are needed, at least one of the two non-crossing spanning trees is a nice caterpillar [3, 1]. So our statement essentially ensures that, if $\frac{3}{2} n$ is not the tight upper bound, then the spanning trees between which a larger transformation is needed should be constructed quite differently.

We think that all our partial results give additional credit to the following conjecture:

- Conjecture 1. There is a flip sequence between any pair of non-crossing spanning trees of length at most $\frac{3}{2} n$.

All our proofs are simple, self-contained, and mainly follow from simple applications of a lemma stated at the beginning of the next section.

2 Results

Recall that all along the paper we consider a set of n points $V=\left\{v_{1}, \ldots, v_{n}\right\}$ in convex position appearing in that order. A leaf of a tree T is a vertex of degree one. An internal node of T is a vertex that is not a leaf. A border edge is an edge of the convex hull, i.e. $v_{i} v_{i+1}$ for some i. Given two points $v_{i}, v_{j}, V \backslash\left\{v_{i}, v_{j}\right\}$ has two parts (possibly empty), namely v_{i+1}, \ldots, v_{j-1} and $v_{j+1}, \ldots, v_{n}, v_{1} \ldots, v_{i-1}$. Finally, we say that t edges $a_{1} b_{1}, \ldots, a_{t} b_{t}$ (that may share endpoints) are parallel if $a_{1}, a_{2}, \ldots, a_{t}, b_{t}, b_{t-1}, \ldots, b_{1}$ appear in that order in the cyclic ordering of V. If moreover all their endpoints are pairwise distinct, then we say the edges are strictly parallel.

Let us first prove the following claim:
\triangleright Claim 2. Let T be a non-crossing spanning tree and e be a border edge. Then we can add e in T with an edge-flip without removing any border edge (except if T only contains border edges).

Proof. Adding e to T does not create any crossing, since e belongs to the convex hull of P. Moreover, the unique cycle in $T \cup\{e\}$ must contain at least an edge e^{\prime} that does not belong to the set of border edges, since otherwise $T \cup\{e\}$ is precisely the convex hull of P.

All our results follow from the following simple but very useful lemma:

- Lemma 3. Let $i \leqslant n$. Let T_{1}, T_{2} be two non-crossing spanning trees of P such that T_{1} contains all the edges $v_{j} v_{j+1}$ for $j<i$ and T_{2} has no edge $v_{k} v_{\ell}$ with $k>i$ and $\ell>i$. Then there exists a flip sequence between T_{1} and T_{2} of length at most $\left|T_{1} \Delta T_{2}\right| / 2$.

Proof. Let us denote by X the subset of points $\left\{v_{1}, \ldots, v_{i}\right\}$ and E_{X} the set of edges $v_{j} v_{j+1}$ for every $j<i$.

Let us first prove that there is a transformation from T_{2} into a tree T_{2}^{\prime} containing all the edges of E_{X} where the size of the symmetric difference decreases at each step. Indeed, assume that T_{2} does not contain an edge e of E_{X}. Since T_{1} contains all edges in E_{X}, the cycle obtained by adding e to T_{2} contains an edge f in $T_{2} \backslash T_{1}$ (and thus in $T_{2} \backslash E_{X}$). Flipping
e with f in T_{2} decreases the size of the symmetric difference between T_{1} and the resulting tree T_{2}^{*} by 2 . We repeat this operation between T_{1} and T_{2}^{*} until all the edges of E_{X} have been added. Denote by T_{2}^{\prime} the resulting tree. Observe that T_{2}^{\prime} consists in a path (containing the set of edges E_{X}) with leaves attached to it. In particular, all the vertices of $V \backslash X$ are leaves.

We now prove that, as long as $T_{1} \neq T_{2}^{\prime}$, one can find a good flip in T_{1}, i.e. such that after applying it to T_{1}, the resulting tree T_{1}^{\prime} still contains all the edges of E_{X}, and $\left|T_{1}^{\prime} \Delta T_{2}^{\prime}\right|=\left|T_{1} \Delta T_{2}^{\prime}\right|-2$. The conclusion immediately follows by iterating this argument on T_{1}^{\prime} until we reach T_{2}^{\prime}.

Figure 1 Dotted edges denote the path E_{X}, edges of T_{2}^{\prime} are dashed and edges of T_{1} are full.

Let us distinguish two cases:
Case 1. All the edges of $T_{1} \backslash T_{2}^{\prime}$ have both endpoints in $V \backslash X$ (see Figure 1 (a)).
An edge e of $T_{1} \backslash T_{2}^{\prime}$ is external if there is no other edge $u v$ in $T_{1} \backslash T_{2}^{\prime}$ such that the endpoints of e not in $\{u, v\}$ do not lie in the same part as X in $V \backslash\{u, v\}$.

Since T_{1} contains all the edges of E_{X}, if $T_{1} \backslash T_{2}^{\prime}$ is non empty, then it should contain an external edge $e=v_{a} v_{b}$. Since v_{a} and v_{b} are leaves of T_{2}^{\prime} and all the edges of T_{2}^{\prime} have an endpoint in X, there are two edges e_{a}, e_{b} linking X to respectively v_{a} and v_{b}. By symmetry, we may assume that the path from v_{b} to X in T_{1} goes through v_{a}, and in particular T_{1} does not contain e_{b} (since it contains all the edges of E_{X}). Therefore flipping $v_{a} v_{b}$ with e_{b} in T_{1} yields a tree. Moreover it is non-crossing since if two edges of the resulting tree cross, one of them should be e_{b}. Since e_{b} is in T_{2}^{\prime} and, by assumption, all the edges of T_{1} between X and $V \backslash X$ are in T_{2}^{\prime}, the other edge f should have both endpoints in $V \backslash X$. This is impossible since e is external. So, $e \rightarrow e_{b}$ is a good flip, which concludes this case.

Case 2. $T_{1} \backslash T_{2}^{\prime}$ contains an edge between X and $V \backslash X$ (see Figure 1 (b)).
Let $v_{i_{1}} v_{j_{1}}$ with $i_{1}<j_{1}$ be the edge of $T_{1} \backslash T_{2}^{\prime}$ between X and $V \backslash X$ such that i_{1} is minimum and, with respect to that condition, $j_{1}>i$ is maximum. Recall that $v_{j_{1}}$ is a leaf of T_{2}^{\prime}, and let $v_{\ell_{1}}$ be its neighbor in X in T_{2}^{\prime}.

Since T_{1} contains E_{X}, exchanging $v_{i_{1}} v_{j_{1}}$ with $v_{\ell_{1}} v_{j_{1}}$ in T_{1} still yields a tree. If it is a good flip, then we are done. Otherwise, there must be an edge $v_{i_{2}} v_{j_{2}}$ of $T_{1} \operatorname{crossing} v_{\ell_{1}} v_{j_{1}}$ and this edge is not in T_{2}^{\prime} (since it crosses $v_{\ell_{1}} v_{j_{1}} \in T_{2}^{\prime}$). Moreover, since both $v_{i_{1}} v_{j_{1}}$ and $v_{i_{2}} v_{j_{2}}$ are in T_{1}, they are parallel.

So either $i_{2} \leqslant i_{1}$ and $j_{2} \geqslant j_{1}$ or $i_{2} \geqslant i_{1}$ and $j_{2} \leqslant j_{1}$ (and at least one of the inequalities is strict). Our choices of i_{1}, j_{1} ensures that the first case is impossible. So $i_{2} \geqslant i_{1}$ and $j_{2} \leqslant j_{1}$.

We now conclude with the following iterative argument. Since $v_{j_{2}}$ is a leaf of T_{2}^{\prime} connected to X, let $v_{\ell_{2}}$ be its neighbor in X. Note that $\ell_{2} \geqslant \ell_{1}$ since $v_{j_{1}} v_{\ell_{1}}$ and $v_{j_{2}} v_{\ell_{2}}$ are parallel in T_{2}^{\prime}. If exchanging $v_{i_{2}} v_{j_{2}}$ and $v_{j_{2}} v_{\ell_{2}}$ is a good flip, the conclusion follows. Otherwise an edge $v_{i_{3}} v_{j_{3}}$ of $T_{1} \backslash T_{2}^{\prime}$ is crossing $v_{j_{2}} v_{\ell_{2}}$. And $v_{i_{1}} v_{j_{1}}, v_{i_{2}} v_{j_{2}}$ and $v_{i_{3}} v_{j_{3}}$ are parallel since $\ell_{2}>\ell_{1}$ and $v_{i_{3}} v_{j_{3}}$ cannot cross $v_{i_{2}} v_{j_{2}}$.

The repetition of this argument either provides a good flip or extracts a sequence $v_{i_{1}} v_{j_{1}}, \ldots, v_{i_{r}} v_{j_{r}}$ of parallel edges in T_{1}. Since T_{1} contains $n-1$ edges, the process must stop after at most $n-1$ steps and yields a good flip, which concludes the proof.

In the rest of the paper, we derive corollaries from that lemma. First, we provide a generic upper bound, which improves the one from [1] in the worst case:

- Corollary 4. There exists a flip sequence of length at most $2 n-\Omega(\sqrt{n})$ between any pair of non-crossing spanning trees.

Proof. Let T_{1}, T_{2} be two non-crossing spanning trees. Partition arbitrarily the set P into \sqrt{n} sections of size \sqrt{n}. If one section does not contain any edge of T_{2} with both endpoints in it, then we use Claim 2 to add to T_{1} all the border edges outside of this section (in $n-\sqrt{n}$ flips), and then apply Lemma 3 to transform the resulting tree into T_{2} with n additional flips.

Therefore, we can assume that each section contains both endpoints of an edge in T_{2}. In particular, the shortest edge contained in each section is a border edge (since T_{2} is a non-crossing spanning tree). Applying again $n-\sqrt{n}$ times Claim 2 to all the non-border edges of T_{2} and n times to those of T_{1}, we can transform both trees into a tree only containing border edges. This yields a flip sequence between T_{1} and T_{2} in at most $2 n-\sqrt{n}+1$ steps (since any two trees only containing border edges can be obtained from each other via a single edge-flip).

A caterpillar is a tree such that the set of internal nodes induces a path. It is moreover nice if:

- it is a star, or
- it has exactly two internal nodes $v w$ such that the two parts of $V \backslash\{v, w\}$ are the open neighborhood of v (except w) and the open neighborhood of w (except v), or
- it has at least three internal nodes such that, for every set of three consecutive internal nodes u, v, w, the neighbors of v are exactly u, w and all the points in the part of $V \backslash\{u, w\}$ which does not contain v (see Figure 2 for an illustration).

As far as we know, in all the examples where $\frac{3}{2} n-\Omega(1)$ flips are needed, at least one of the two non-crossing spanning trees is a nice caterpillar $[3,1]$.

- Corollary 5. Let T_{1}, T_{2} be non-crossing spanning trees such that T_{2} is a nice caterpillar. There exists a flip sequence between T_{1} and T_{2} of length at most $\frac{3}{2} n$.

Proof. Let us denote by w_{1}, \ldots, w_{k} the set of internal nodes of T_{2}. Up to renaming, we can assume that $w_{1}=v_{1}$ and denote by i the index such that $v_{i}=w_{k}$. Up to reversing the ordering of the vertices, we may also assume that $i \leqslant n / 2$. Applying Claim 2 at most i times, we can add all edges $v_{j} v_{j+1}$ for $j<i$ to T_{1} and obtain a tree T_{1}^{\prime}.

Since T_{2} is a nice caterpillar, $\left\{v_{1}, \ldots, v_{i}\right\}$ contains every other w_{j} and all the leaves of T_{2} attached to the w_{j} 's in $\left\{v_{i}, \ldots, v_{n}\right\}$. Therefore, every edge of T_{2} has an endpoint in

Figure 2 Two caterpillars, whose internal path $u v w x$ is highlighted in bold. The left one is not nice (v does not satisfy the desired property), while the right one is.
$\left\{v_{1}, \ldots, v_{i}\right\}$ hence T_{1}^{\prime} and T_{2} satisfy the hypothesis of Lemma 3 and we can transform T_{1}^{\prime} into T_{2} in at most n steps for a total of $n+i \leqslant 3 n / 2$ steps.

Using Lemma 3, one can also prove the following that will lead to another interesting corollary:

- Lemma 6. Let T_{1}, T_{2} be two non-crossing spanning trees such that T_{2} has t parallel edges (resp. strictly parallel edges). There exists a flip sequence between T_{1} and T_{2} of length at most $2 n-\frac{t+1}{2}$ (resp. $2 n-t$).

Proof. Let t be the maximum number of parallel edges in T_{2}. Let $e_{1}=a_{1} b_{1}, \ldots, e_{t}=a_{t} b_{t}$ be t parallel edges of T_{2}. We say that vertices between b_{t} and b_{1} (resp. a_{1} and a_{t}) in the cyclic ordering in the section that does not contain a_{1} (resp. b_{1}) are bottom vertices (resp. top vertices). Let b be the number of bottom vertices.

Since T_{2} is non-crossing, for every $i \leqslant t-1$, there is a shortest path Q_{i} from an endpoint of e_{i} to an endpoint of e_{i+1} in T_{2}. Note that this path might be reduced to a single vertex if the two edges share an endpoint (we say that Q_{i} is trivial). Observe that the same trivial path may appear several times if several edges share the same endpoint. By maximality of t, there cannot be an edge in Q_{i} between a top vertex and a bottom vertex. Therefore we can classify the $t-1$ paths Q_{i} in two types: Q_{i} is a top path if it only contains edges between top vertices and a bottom path otherwise. By symmetry, we can assume that at least $w:=(t-1) / 2$ paths are top paths.

We claim that we can transform T_{2} into a tree T_{2}^{\prime} such that all the edges of the tree T_{2}^{\prime} have at least one endpoint between a_{1} and a_{t} in at most $b-w$ steps.

Denote by A_{i} the set of top vertices between a_{i} and a_{i+1} and by B_{i} the set of bottom vertices between b_{i+1} and b_{i}. Recall that by maximality of t there is no edge between A_{i} and B_{i}, except $a_{i} b_{i}$ and $a_{i+1} b_{i+1}$. If Q_{i} is a non-trivial bottom path, we can remove one edge of the bottom part and add one edge in the top part to get a top path. We then aim at removing all edges of Q_{i} and connect all their endpoints in B_{i} to a_{i}. To this end, we say that an edge $v_{p} v_{q}$ with $p<q$ with both endpoints in B_{i} is exterior if no edge $v_{r} v_{s}$ distinct from $v_{p} v_{q}$ with both endpoints in B_{i} satisfies $r \leqslant p<q \leqslant s$. One can easily remark that we can iteratively replace an exterior edge $v_{p} v_{q}$ by an arc connecting v_{p} or v_{q} to a_{i} until no edge with both endpoints in B_{i} remains. So we can ensure that no edge with both endpoints in B_{i} remains in at most $\left|B_{i}\right|-1$ steps (-2 if Q_{i} was initially a top path). If we sum over all
the sections, since $\sum_{i}\left(\left|B_{i}\right|-1\right)=b-1$ and we remove 1 additional flip for each of the w top paths, this process yields a tree T_{2}^{\prime} where all the edges have at least one endpoint between a_{1} and a_{t} in $b-w-1$ flips.

Now we can transform T_{1} into a tree T_{1}^{\prime} that contains all border edges except maybe between bottom vertices in at most $n-b$ steps by Claim 2. Finally, we may apply Lemma 3 to transform T_{1}^{\prime} into T_{2}^{\prime} in at most n steps, which in total gives a flip sequence of length at most $(b-w-1)+(n-b)+n=2 n-w-1$, as claimed.

In the strictly parallel case, let t^{\prime} be the maximum number of strictly parallel edges. Observe that each non-trivial top path must contain a border edge in T_{2} (and then in $\left.T_{2}^{\prime}\right)$. Note that there are at most $t-t^{\prime}$ trivial top paths, hence T_{2}^{\prime} and T_{1}^{\prime} share at least $w-t+t^{\prime}$ border edges, and by Lemma 3, the flip sequence from T_{1}^{\prime} to T_{2}^{\prime} costs at most $n-w+t-t^{\prime}$. The total length of the flip sequence between T_{1} and T_{2} is thus at most $(b-w-1)+(n-b)+\left(n-w+t-t^{\prime}\right)=2 n-2 w-1+t-t^{\prime}=2 n-t^{\prime}$.

Lemma 6 immediately implies:

- Corollary 7. Let T_{1}, T_{2} be two non-crossing spanning trees such that T_{1} contains a subpath of length t. There exists a flip sequence between T_{1} and T_{2} of length at most $2 n-\frac{t}{3}$.

Proof. Let $Q:=x_{1}, \ldots, x_{t+1}$ be a subpath of T_{1} of length t. For every $2 \leqslant i \leqslant t-1$, we say that the edge $x_{i} x_{i+1}$ of Q is separating if x_{i-1} and x_{i+2} are separated by x_{i}, x_{i+1} (i.e. exactly one of x_{i}, x_{i+1} appear between x_{i-1} and x_{i+2} in the cyclic ordering of the vertices). We say that the edge is a series edge otherwise. By convention, the first and last edges of Q are both series and separating. Denote by s (resp. p) the number of series edges (resp. separating edges), so that $s+p=t+2$.

Observe that the set of separating edges of Q are parallel, hence Lemma 6 ensures that there exists a flip sequence of length at most $a=2 n-\frac{p-1}{2}$. Moreover, if $x_{i} x_{i+1}$ is a series edge then there is a border edge in T_{1} between x_{i} and x_{i+1} (in the part that does not contain the vertices x_{i-1} and x_{i+2}). So there exists also a flip sequence of length at most $b=2 n-s+1$ from T_{1} to T_{2} (passing through a border tree) by Claim 2. Now observe that $2 a+b=6 n-t$, hence either a or b must be at most $\frac{6 n-t}{3}$, which concludes.

In the case of paths, we can actually improve Corollary 7 by finding a flip sequence of length at most $\frac{3}{2} n$. This reproves in a shorter way a result of [1] the worst case scenario, namely when the two trees do not share any edge ${ }^{1}$.

- Corollary 8. Let T_{1}, T_{2} be two non-crossing spanning trees such that T_{2} is a path. There exists a flip sequence between T_{1} and T_{2} of length at most $\frac{3}{2} n$.

Proof. Let x_{1}, \ldots, x_{n} be the vertices of the path T_{2} (in order). Deleting x_{1} and x_{n} in the cyclic ordering separates the set of vertices into two parts called the top and the bottom parts. We consider that x_{1} and x_{n} appear in both parts. Observe that all the edges of T_{2} are either border edges (between two consecutive vertices of the top or the bottom part) or traversing edges with one endpoint in each part.

Let us denote by n_{t} (resp. n_{b}) the number of vertices of the top part (resp. bottom part) including x_{1} and x_{n}. Note that $n_{t}+n_{b}=n+2$. Let us denote by b_{t}, b_{b} the number of border edges in T_{2} respectively in the top and bottom parts.

[^0]We add all the $n_{t}-1$ border edges of the top part to T_{1} by Claim 2. Then, we transform in T_{2} all the b_{b} border edges of the bottom part into traversing edges as follows: flip each bottom border edge $x_{i} x_{i+1}$ with $x_{j} x_{i+1}$ where j is the largest index of a top vertex less than i. Observe that the two resulting trees share b_{t} common border edges in the top part, and satisfy the hypothesis of Lemma 3. Therefore there is a flip sequence of length at most $n-b_{t}$ between them, and thus we can transform T_{1} in T_{2} with at most $\left(n_{t}-1\right)+b_{b}+\left(n-b_{t}\right)$ flips.

Exchanging the top and bottom parts in the previous argument yields another flip sequence of length $\left(n_{b}-1\right)+b_{t}+\left(n-b_{b}\right)$. The sum of these lengths is at most $2 n+n_{b}+n_{t}-2=3 n$ which ensures one of the two sequences has length at most $\frac{3}{2} n$, which completes the proof.

References

1 Oswin Aichholzer, Brad Ballinger, Therese Biedl, Mirela Damian, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Josef Tkadlec, and Yushi Uno. Reconfiguration of non-crossing spanning trees. CoRR, abs/2206.03879, 2022. arXiv:2206.03879, doi:10.48550/ arXiv. 2206.03879.
2 David Avis and Komei Fukuda. Reverse search for enumeration. Discret. Appl. Math., $65(1-3): 21-46,1996$. doi:10.1016/0166-218X (95) 00026-N.
3 M. Carmen Hernando, Ferran Hurtado, Alberto Márquez, Mercè Mora, and Marc Noy. Geometric tree graphs of points in convex position. Discret. Appl. Math., 93(1):51-66, 1999. URL: https://doi.org/10.1016/S0166-218X(99)00006-2.

[^0]: ${ }^{1}$ The result of [1] ensures that there exists a transformation whose length is at most $\frac{3}{2} \cdot\left|T_{2} \backslash T_{1}\right|$ when T_{2} is a path.

