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Abstract
We consider an ordinal tree T on n nodes, such that each node is assigned a d-dimensional weight
vector w ∈ {1, 2, . . . , n}d, where d ∈ N is a constant. We study path queries as generalizations of
the well-known orthogonal range queries, with one of the dimensions being tree topology rather than
a linear order. Since in our definitions d only represents the number of dimensions of the weight
vector without taking the tree topology into account, a path query in a tree with d-dimensional
weight vectors generalizes the corresponding (d + 1)-dimensional orthogonal range query.

Our study yields the following new results. We solve the 2D ancestor dominance reporting
problem as a direct generalization of 3D dominance reporting problem, in time O(lg n + k) and
space of O(n) words, where k is the size of the output. We solve the path successor problem in
O(n lgd−1 n) words of space and time O(lgd−1+ϵ n) for d ≥ 1 and an arbitrary constant ϵ > 0.
We propose a solution to the path counting problem, with O(n(lg n/ lg lg n)d−1) words of space
and O((lg n/ lg lg n)d) query time, for d ≥ 1. Finally, we solve the path reporting problem in
O(n lgd−1+ϵ n) words of space and O((lgd−1 n)/(lg lg n)d−2 + k) query time, for d ≥ 2. These results
match or nearly match the best trade-offs of the respective range queries. We are also the first to
solve the path successor problem even for d = 1.

Keywords and phrases range queries, path queries, ancestor dominance reporting, path counting,
path reporting, path successor

Digital Object Identifier 10.57717/cgt.v4i1.39

Related Version A preliminary partial version of this article was published in the Proceedings of
the 30th International Symposium on Algorithms and Computation (ISAAC 2019) [16].

Funding Meng He: This work was supported by Natural Sciences and Engineering Research Council
(NSERC) of Canada
Serikzhan Kazi: This work was supported by Natural Sciences and Engineering Research Council
(NSERC) of Canada

1 Introduction

The problem of pre-processing a weighted tree, i.e. a tree in which each node is associated
with a weight value, to support various queries evaluating a certain function on the node
weights of a given path, has been studied extensively [2, 6, 15, 21, 9, 19, 4]. For example, in
path counting (resp. path reporting), the nodes of the given path with weights lying in the
given query interval are counted (resp. reported). These queries address the needs of fast
information retrieval from tree-structured data such as XML and tree network topology.

For many applications, meanwhile, a node in a tree is associated with not just a single
weight, but rather with a vector of weights. Consider a simple scenario of an online forum
thread, where users can rate responses and respond to posts. Induced is a tree-shaped
structure with posts representing nodes, and replies to a post being its children. One can
imagine enumerating all the ancestor posts of a given post that are not too short and have
sufficiently high average ratings. Ancestor dominance query, which is among the problems
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8:2 Path and Ancestor Queries

we consider, provides an appropriate model in this case.
We define a d-dimensional weight vector w = (w1, w2, . . . , wd) to be a vector with d

components, each in rank space [n],1 i.e. w ∈ [n]d, with wi being referred to as the ith

weight of w. We then consider an ordinal tree T on n nodes, each node x of which is assigned
a d-dimensional weight vector w(x). The queries we are interested in present us with a
d-dimensional orthogonal range Q =

∏d
i=1[qi, q′

i]. A weight vector w is in Q iff ∀i ∈ [1, d] it
holds that qi ≤ wi ≤ q′

i. Precisely, in our queries we are given a pair of vertices x, y ∈ T, and
an arbitrary orthogonal range Q. With Px,y being the path from x to y in the tree T, the
goal is to pre-process the tree T for the following types of queries:

Path Counting: return |{z ∈ Px,y | w(z) ∈ Q}|.
Path Reporting: enumerate {z ∈ Px,y | w(z) ∈ Q}.
Path Successor : return arg min{w1(z) | z ∈ Px,y and w(z) ∈ Q}.2

Ancestor Dominance Reporting: a special case of path reporting, in which y is the root of
the tree and q′

i = +∞ for all i ∈ [d]. That is, the query reports the ancestors of x whose
weight vectors dominate the vector q = (q1, q2, . . . , qd).

This is indeed a natural generalization of the traditional weighted tree, which we refer to as
1D-weighted (or simply as weighted, when context is clear), to the case in which the weights
are multidimensional vectors. At the same time, when the tree degenerates into a single path,
these queries become respectively (d + 1)-dimensional orthogonal range counting, reporting
and successor, as well as (d + 1)-dimensional dominance reporting, queries. Thus, the queries
we study are generalizations of these fundamental geometric queries in high dimensions. We
also go along with the state of the art in orthogonal range search by considering weights in
rank space, since the case in which weights are from a larger universe can be reduced to
it [12]. We additionally assume d, the number of dimensions, is a positive integer constant.

1.1 Previous work
1.1.1 Path queries in weighted trees
For 1D-weighted trees, Chazelle [6] gave an O(n)-word emulation dag-based data structure
that answers path counting queries in O(lg n) time;3 it works primarily with topology of
the tree and is thus oblivious to the distribution of weights. Later, He et al. [19] proposed
a solution with nH(WT ) + O(n lg σ) bits of space and O( lg σ

lg lg n + 1) query time, when the
weights are from [σ]; here, H(WT ) is the entropy of the multiset of the weights in T.

He et al. [19] introduced and solved the path reporting problem using (i) linear space and
O((1+k) lg σ) query time, or (ii) O(n lg lg σ) words of space but O(lg σ+k lg lg σ) query time,
in the word-RAM model; henceforth we reserve k for the size of the output. Patil et al. [27]
presented a succinct data structure for path reporting with n lg σ + 6n + O(n lg σ) bits of
space and O((lg n + k) lg σ) query time. Although the latter solution uses less space than the
version (i) of the former when σ ≪ n, it suffers a logarithmic slowdown in the additive term.
An optimal-space solution with nH(WT ) + O(n lg σ) bits of space and O((1 + k)( lg σ

lg log n + 1))
reporting time is due to He et al. [19]. One of the trade-offs proposed by Chan et al. [4]
requires O(n lgϵ n) words of space for the query time of O(lg lg n + k).

1 Throughout this article, [n] stands for {1, 2, . . . , n} for any positive integer n.
2 For path successor, we assume that q′

1 = ∞; if not, we need only check whether the 1st weight of the
returned node is at most q′

1.
3 lg x denotes log2 x in this paper.
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1.1.2 Orthogonal range queries

Dominance reporting in 3D was solved by Chazelle and Edelsbrunner [7] in linear space with
either O((1 + k) lg n) or O(lg2 n + k) query time, in the pointer-machine (PM) model, with
the latter being improved to O(lg n lg lg n + k) by Makris and Tsakalidis [22]. The same
authors [22] developed, in the word-RAM, a linear-size, O(lg n + k) and O((lg lg n lg lg lg n +
k) lg lg n) query-time data structures for the unrestricted case and for points in rank space,
respectively. Nekrich [23] presented a word-RAM data structure for points in rank space,
supporting queries in O((lg lg n)2 + k) time, and occupying O(n lg n) words; this space
was later reduced to linear by Afshani [1], retaining the same query time. Finally, in the
same model, a linear-space solution with O(lg lg n + k) query time was designed for 3D
dominance reporting in rank space [1, 3]. In the PM model, Afshani [1] also presented an
O(lg n + k) query time, linear-space data structure for points in R3. For the dominance
reporting problem in 4D, Nekrich [24] presented a data structure of size O(n lgϵ n) and the
query time of O(lg n/ lg lg n + k).

For the word-RAM model, JáJá et al. [20] generalized the range counting problem for
d ≥ 2 dimensions and proposed a data structure of O(n( lg n

lg lg n )d−2) words of space and
O((lg n/ lg lg n)d−1) query time. Chan et al. [5] solved orthogonal range reporting in 3D
rank space in O(n lg1+ϵ n) words of space and O(lg lg n + k) query time. For 4D orthogonal
range reporting, Nekrich [25] presented a data structure using O(n lg2+ϵ n) words of space,
for O(lg n/ lg lg n + k) query time; the full version [24] of the paper extends this result to
d ≥ 4, obtaining a data structure with O(n lgd−2+ϵ n) words of space, for the query time of
O(( lg n

lg lg n )d−3 + k), for the d-dimensional orthogonal range reporting problem.
Nekrich and Navarro [26] proposed two trade-offs for the range successor problem, with

either O(n) or O(n lg lg n) words of space, and respectively with O(lgϵ n) or O((lg lg n)2)
query time. Zhou [30] later improved upon the query time of the second trade-off by a factor
of lg lg n, within the same space. Both results are for points in rank space.

1.2 Our results

As d-dimensional path queries generalize the corresponding (d + 1)-dimensional orthogonal
range queries, we compare results on them to show that our bounds match or nearly match
the best results or some of the best trade-offs on geometric queries in Euclidean space. We
present solutions for the:

2D ancestor dominance reporting problem, in O(n) words of space and the query time of
O(lg n + k). This matches the space bound for 3D dominance reporting of Afshani [1]
and Chan [3], while still providing efficient query support.
path successor problem, in O(n lgd−1 n) words and O(lgd−1+ϵ n) query time, for an
arbitrarily small positive constant ϵ and d ≥ 1. These bounds match the first trade-off
for range successor of Nekrich and Navarro [26].4 Previously this problem has not been
studied even on 1D-weighted trees;
path counting problem, in O(n( lg n

lg lg n )d−1) words and O(( lg n
lg lg n )d) query time for d ≥ 1.

This matches the best bound for range counting in d + 1 dimensions [20];
path reporting problem, for:

4 Range successor can be generalized to higher dimensions via standard techniques based on range trees.

CGT
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d = 2 in O(n lg1+ϵ n) words and O(lg n + k) query time. In 2D, the space matches that
of the corresponding result of Chan et al. [5] on the 3D range reporting, while the first
term in the query complexity is slowed down by a sub-logarithmic factor.

d ≥ 3 in O(n lgd−1+ϵ n) words and O( lgd−1 n
(lg lg n)d−2 + k) query time. Our result matches

both in space and query time the result that can be obtained by combining known
pre-processing techniques [28] with the latest result from Nekrich [25]. The latter
result, however, was published after the preliminary version of the present article and
is more complex.

To achieve our results, we introduce a framework for solving range sum queries in arbitrary
semigroups and extend base-case data structures to higher dimensions using universe reduction.
A careful design with results hailing from succinct data structures and tree representations
has been necessary, both for building space- and time-efficient base data structures, and for
porting, using tree extractions, the framework of range tree decompositions from general
point-sets to tree topologies (Lemma 6). The notion of maximality in Euclidean sense is
central to solutions of orthogonal dominance problems. We employ a few novel techniques and
extend this notion to tree topologies and provide the means of efficient computation thereof
(Section 4). Furthermore, given a weighted tree T, we propose efficient means of zooming
into the nodes of T with weights in the given range in the range tree (Lemma 15). Given
the ubiquity of the concepts, these technical contributions are likely to be of independent
interest.

1.3 Comparison
In this section, we compare our results, presented in Section 1.2, with those that could be
achieved immediately by well-known techniques such as heavy-path decomposition [28].

Namely, consider pre-processing the topology of the given tree T using heavy-path
decomposition (henceforth HPD, for short). HPD roots the tree at an arbitrary node and
computes the size of the subtree rooted at each node. The tree of size n is then laid out in an
array L of length n via a depth-first search (dfs) launched from the root. The dfs is special
in the sense that upon processing the children of a current node x, one first descends to the
child of x with the largest subtree-size among all the children of x (henceforth called heaviest
child). Informally, during the dfs, one maintains a current chain, which is extended by one
while descending to the heaviest child; one initiates a new chain when descending to other
children. The array L is therefore a preorder enumeration of the nodes of T, where a node in
each position is either the heaviest child of its parent, or the head of a chain of its own.

Thus, HPD gives rise to a set of chains, each of which can be considered a d + 1-
dimensional set of points. By the property of HPD, a path query can be split into O(lg n)
queries on d + 1-dimensional regions. In more detail, we construct query data structures
over each chain. When answering a query, we query O(lg n) of these chains, and combine
the results of these O(lg n) queries.

Table 1, therefore, is obtained as follows. Each type of query we consider in this work
occupies a row of its own, three columns each. The leftmost column represents the query
time (resp. space occupancy) of the data structure we present in this article, while the second
column stands for the query time (resp. space occupancy) of a data structure based on HPD.
Finally, the third column represents the best known bounds for the corresponding problems
in Euclidean space.

When calculating space bounds, the bounds for the HPD-based approach equal those of
the best known bounds for d + 1-dimensional orthogonal range queries. When calculating



M. He and S. Kazi 8:5

query time, we also multiply such a bound (path counting and path successor), or the additive
term thereof (ancestor dominance and path reporting), by O(lg n).

For example, the 2D version of the range successor problem has a trade-off of O(n)
space and O(lgϵ n) time [26], This implies an O(n lgd−1 n)-word structure with O(lgd−1+ϵ n)
query time in Rd+1, where d ≥ 1, by the standard reduction via range trees. We therefore
extend this approach to an HPD-processed tree T with O(n lgd−1 n) words of space, thereby
answering d-dimensional path successor queries in O(lgd+ϵ n) time. The query time degrades
by a factor of O(lg n) compared to the solution for points in Rd+1, because we account for
the logarithmic slowdown of HPD.

For the ancestor dominance problem, we list in Table 1 the result for d = 2 only, for
the following reasons. The 4D dominance reporting structure of Nekrich [24], which was
published after the preliminary version of this article [16] and is complex, can be generalized
to even higher dimensions using range trees of non-constant branching factors [20] and further
combined with HPD to produce a data structure of size O(n lgϵ+d−3 n) and O( lgd−1 n

(lg lg n)d−2 + k)
query time for d-dimensional ancestor dominance reporting. This result holds for d ≥ 3. For
this case, we can provide two data structures. Both of them, however, would be inferior to
the combination of HPD with [24].

Indeed, our approach for d = 2, when extended for arbitrary d ≥ 3 via Lemma 6, achieves
the space complexity of O(n lgd−2 n) words and the query time of O(lgd−1 n + k). In terms
of space complexity, thus, this is poly-logarithmically worse. For query time, our approach
suffers a factor of poly-loglog degradation.

For dimensions higher than 2, we can also arrive, via Lemma 7 (similar to our ap-
proach of generalizing path reporting to higher dimensions), at a different data structure, of
O(n lgd−2+ϵ n) words and having O( lgd−1 n

(lg lg n)d−2 + k) query time. That is, our data structure
would still suffer an additional lg n factor in space complexity, although its query time would
be the same as that of HPD with [24].

Thus, we do not include this case so that Table 1 lists new results only.

2 Preliminaries

2.1 Notation

Given a d-dimensional weight vector w = (w1, w2, . . . , wd), we define vector wi,j to be
(wi, wi+1, . . . , wj). We extend the definition to a range Q =

∏d
k=1[qk, q′

k] by setting Qi,j ≜∏j
k=i[qk, q′

k]. (Henceforth ≜ stands for the phrase “defined as”.) We use the symbol ⪰ for
domination: p ⪰ q iff p dominates q, i.e. each of the weights of p is greater than or equal
to the corresponding weight of q; a point p k-dominates q iff p1,k ⪰ q1,k. With d′ ≤ d

and 0 < ϵ < 1 being constants, a weight vector w is said to be (d′, d, ϵ)-dimensional iff
w ∈ [n]d′ × [⌈lgϵ n⌉]d−d′ ; i.e. each of its first d′ weights is drawn from [n], while each of its
last d − d′ weights is in [⌈lgϵ n⌉]. When stating theorems, we set i/0 ≜ ∞ for i > 0.

During a preorder traversal of a given tree T , the ith node visited is said to have preorder
rank i. (When context is clear, the expression x ∈ T stands for “the node x of the tree T”.)
Preorder ranks are commonly used to identify tree nodes in various succinct data structures
which we use as building blocks. Thus, we also identify a node by its preorder rank, i.e. the
node i in T is the node with preorder rank i in T . The path between the nodes x, y ∈ T

is denoted as Px,y, both ends inclusive. For a node x ∈ T, its set of ancestors, denoted as
A(x), includes x itself; A(x) \ {x} is then the set of proper ancestors of x. Given two nodes
x, y ∈ T, where y ∈ A(x), we set Ax,y ≜ Px,y \ {y}.

CGT
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Our approach HPD+Rd+1 Rd+1
A

nc
es

to
r

d
=

2 Time O(lg n + k) O(lg lg n lg n + k) O(lg lg n + k)

[1
,

3]

Space O(n) O(n) O(n)

C
ou

nt
in

g

d
≥

1 Time O(( lg n
lg lg n )d) O( lgd+1 n

(lg lg n)d ) O(( lg n
lg lg n )d)

[2
0]

Space O(n( lg n
lg lg n )d−1) O(n( lg n

lg lg n )d−1) O(n( lg n
lg lg n )d−1)

Su
cc

es
so

r

d
≥

1 Time O(lgd−1+ϵ n) O(lgd+ϵ n) O(lgd−1+ϵ n)

[2
6]

Space O(n lgd−1 n) O(n lgd−1 n) O(n lgd−1 n)

R
ep

or
tin

g

d
=

2 Time O(lg n + k) O(lg lg n lg n + k) O(lg lg n + k)

[5
]

Space O(n lg1+ϵ n) O(n lg1+ϵ n) O(n lg1+ϵ n)

d
≥

3 Time O( lgd−1 n
(lg lg n)d−2 + k) O( lgd−1 n

(lg lg n)d−2 + k) O(( lg n
lg lg n )d−2 + k)

[2
5]

Space O(n lgd−1+ϵ n) O(n lgd−1+ϵ n) O(n lgd−1+ϵ n)

Table 1 Summary comparison of our results versus solutions based on heavy-path decomposition
(HPD), as well as the Euclidean Rd+1 case. We state the results for the path reporting problem in
the case of d ≥ 3 separately, because both results – our solution and HPD+Rd+1 – match, but our
solution is simpler

2.2 Succinct representations of ordinal trees
Succinct representations of unlabeled and labeled ordinal trees is a widely researched area.
The following lemma presents the previous results on unlabeled trees that will be used in our
solutions.

▶ Lemma 1 ([17]). An ordinal tree T on n nodes can be represented in 2n + O(n) bits of
space to support the following operations, for any nodes x, y ∈ T, in O(1) time:

child(T, x, i) the ith child of x;
depth(T, x) the number of ancestors of x;
level_anc(T, x, i) the ith closest ancestor of x (with level_anc(T, x, 1) being x itself);
LCA(T, x, y) the lowest common ancestor of x and y.

In a labeled tree, each node is associated with a label over an alphabet. Such a label can
serve as a scalar weight; in our solutions, however, they typically categorize tree nodes into
different classes. Hence we call these assigned values labels instead of weights. We summarize
the previous result used in our solutions, in which a node (resp. ancestor) with label α is
called an α-node (resp. α-ancestor):

▶ Lemma 2 ([18]). Let T be an ordinal tree on n nodes, each having a label drawn from
[σ], where σ = O(lgϵ n) for some constant 0 < ϵ < 1. Then, T can be represented in
n(lg σ + 2) + O(n) bits of space to support the following operations, for any node x ∈ T, in
O(1) time:

pre_rankα(T, x) the number of α-nodes that precede x in preorder;
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pre_selectα(T, i) the ith α-node in preorder; and
level_ancα(T, x, i) the ith closest α-ancestor of x.

Here, one has level_ancα(T, x, 1) = x if x is an α-node itself.

2.3 Tree extraction
Tree extraction [19] filters out a subset of nodes while preserving the underlying ancestor-
descendant relationship among the nodes. Namely, given a subset X of tree nodes called
extracted nodes, an extracted tree TX can be obtained from the original tree T as follows.
Consider each node v /∈ X in an arbitrary order; let p be v’s parent. We remove v and all
its incident edges from T , and plug all its children v1, v2, . . . , vk (preserving their left-to-
right order) into the slot now freed from v in p’s list of children. After removing all the
non-extracted nodes, if the resulting forest FX is a tree, then TX ≡ FX . Otherwise, we
create a dummy root r and insert the roots of the trees in FX as the children of r, in the
original left-to-right order. The preorder ranks and depths of r are both 0, so that those
of non-dummy nodes still start at 1. An original node x ∈ X of T and its copy, x′, in TX

are said to correspond to each other; x′ is also said to be the TX -view of x, and x is the
T -source of x′. The TX -view of a node y ∈ T (y is not required to be in X) is more generally
defined to be the node y′ ∈ TX corresponding to the lowest extracted ancestor of y, i.e. to
the lowest node in A(y) ∩ X. (See Figure 1 for an example of tree extraction.)

A𝑇

B

C

D E

F

G

H

I

J

(a)

A'𝑇𝑋

C'

D'

F'

I'

J'

(b)

R𝑇𝑋̄

B''

E''

G''

H''

(c)

1(𝑇, 𝑇𝑋)

0

1

1 0

1

0

0

1

1

(d)

Figure 1 Tree extraction. Original tree (a), extracted tree TX (b), extraction of the complement
of X, tree TX̄ (c) and the indicator tree (T, TX) (d). The blue shaded nodes in T form the set X. In
the tree TX , node C′ corresponds to node C in the original tree T , and node C′ in the extracted tree
TX is the TX -view of nodes C and E in the original tree T. Finally, node C in T is the T -source of the
node C′ in TX . Extraction of the complement, TX̄ , demonstrates the case of adding a dummy root R

A common scenario of using tree extraction in our solutions is captured in the following

▶ Definition 1. For a given tree T and an extraction TX therefrom, let T ′ be a tree with the
topology of T and in which a node is labeled with 1 if it has been extracted into TX , or with 0
otherwise. Then T ′ is referred to as the indicator tree of (T, TX).

Figure 1 also gives an example of an indicator tree. From Lemma 2 it follows that indicator
tree of (T, TX) occupies 3n + O(n) bits of space. When translating node identifiers between
T and TX , the following fact can be readily seen:

▶ Proposition 1. Let T ′ be the indicator tree of (T, TX). Then, (i) the corresponding node
x ∈ T of a node x∗ ∈ TX can be recovered as

x = pre_select1(T ′, x∗);

and (ii) the TX-view x∗ of a node x ∈ T can be computed as

x∗ = 1 + pre_rank1(T ′, level_anc1(T ′, x, 1)).

CGT
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2.4 Representation of a range tree on node weights by hierarchical tree
extraction

Range trees are widely used in solutions to query problems in Euclidean space. He et al. [19]
further applied the idea of range trees to 1D-weighted trees. They defined a conceptual range
tree on node weights and represented it by a hierarchy of tree extractions. Let us summarize
how the hierarchy is built.

We first define a conceptual range tree on [n] with branching factor f , where f = O(lgϵ n)
for some constant 0 < ϵ < 1. Its root represents the entire range [n]. Starting from the root
level, we keep partitioning each range, [a, b], at the current lowest level into f child ranges
[a1, b1], . . . , [af , bf ], where ai = ⌈(i − 1)(b − a + 1)/f⌉ + a and bi = ⌈i(b − a + 1)/f⌉ + a − 1.
This ensures that, if weight j ∈ [a, b], then j is contained in the child range with subscript
⌈f(j − a + 1)/(b − a + 1)⌉, which can be determined in O(1) time. We stop partitioning a
range when its size is 1, i.e. when b − a + 1 = 1. This range tree has h = ⌈logf n⌉ + 1 levels.
The root is at level 1 and the bottom level is level h. We next describe how to construct each
of the trees Tl, for each level l of the range tree.

Construction of auxiliary trees Tl

The construction of Tl has two major aspects: (a) the topology of Tl; and (b) the labels of
the nodes in Tl. In the next paragraphs, we go through these steps, in order.

Topology of Tl For 1 ≤ l < h, the topology of the auxiliary tree Tl for level l is determined
as follows. The root of Tl is a dummy node rl. To define the rest of the tree structure, let
[a1, b1], . . . , [am, bm] be the ranges at level l. For a range [a, b], let Fa,b stand for the extracted
forest of the nodes of T with weights in [a, b]. Then, for each range [ai, bi], we extract Fai,bi

and plug its roots as children of the dummy root rl, retaining the original left-to-right order
of the roots within the forest. Thus, between forests, the roots in Fai+1,bi+1 are the right
siblings of the roots in Fai,bi

, for any i ∈ [m − 1].

Labels of the nodes in Tl We then label the nodes of Tl using the reduced alphabet [f ], as
follows. Recall that barring the dummy root rl, there is a bijection between the nodes of
T and those of Tl. Let xl ∈ Tl be the node corresponding to x ∈ T. In the range tree, let
[a, b] be the level-l range containing the weight of x. Then, at level l + 1, if the weight of x is
contained in the jth child range of [a, b], then xl ∈ Tl is labeled j.

Example Figure 2 shows an example of hierarchical tree extraction. In T1 the nodes labeled
with 3 correspond to the nodes in T with original weights 5 and 6, because when the range
[6] is split into f = 3 ranges [1, 2] ∪ [3, 4] ∪ [5, 6], numbers 5 and 6 fall into the third range
[5, 6]. Likewise, the nodes labeled 1 in T1 are precisely those that were originally labeled as 1
or 2.

Each Tl is represented by Lemma 2 in n(lg f + 2) + O(n) bits, so the total space cost of
all the Tls is n lg n + (2n + O(n)) logf n bits. When f = ω(1), this space cost is n + O(n)
words. This completes the description of hierarchical tree extraction.

The following lemma maps xl to xl+1:

▶ Lemma 3 ([19]). Given a node xl ∈ Tl and the range [a, b] of level l containing the weight
of x, node xl+1 ∈ Tl+1 can be located in O(1) time, for any l ∈ [h − 2].



M. He and S. Kazi 8:9

1

𝑇

6

1

3 2

4

6

1

5

6

1

r1

𝑇1

3

1

2 1

2

3

1

3

3

r2

𝑇2

1

1

2

1

1 2 2 2

1 2

𝐹5,6

𝐹3,4

𝐹1,2

Ball-inheritance data structure

Figure 2 Hierarchical tree extraction with branching factor f = 3, for a tree T weighted over an
alphabet of size 6. The labels (for Tl) and weights (for T ) are given within the nodes. For some
nodes, the correspondence across the levels of the hierarchy is shown using same non-plain colours
and node shapes. Rounded rectangular areas enclose the nodes of the corresponding forests. Dashed
arrow maps a node in Tl to the original node, and illustrate the ball-inheritance data structure of
Lemma 4

Later, Chan et al. [4] augmented this representation with ball-inheritance data structure
to map an arbitrary xl back to x:

▶ Lemma 4 ([4]). Given a node xl ∈ Tl, where 1 ≤ l < h, the node x ∈ T that corresponds
to xl can be found using O(n lg n · s(n)) bits of additional space and O(t(n)) time, where
(a) s(n) = O(1) and t(n) = O(lgϵ n);
(b) s(n) = O(lg lg n) and t(n) = O(lg lg n); or
(c) s(n) = O(lgϵ n) and t(n) = O(1).

In what follows, we denote as Tv the extraction from T of the nodes with weights in v’s
range, for a node v of the range tree R.

2.5 Path minimum in 1D-weighted trees

Finally, to support ancestor dominance reporting and path successor, we need data structures
supporting path minimum queries, which ask for the node with the smallest weight in the
given path of a weighted tree. We summarize the best result on path minimum; in it, α(m, n)
and α(n) are the inverse-Ackermann functions:

▶ Lemma 5 ([4]). An ordinal tree T on n weighted nodes can be indexed (a) using O(m) bits
of space to support path minimum queries in O(α(m, n)) time and O(α(m, n)) accesses to
the weights of nodes, for any integer m ≥ n; or (b) using 2n + O(n) bits of space to support
path minimum queries in O(α(n)) time and O(α(n)) accesses to the weights of nodes. In
particular, when m = Θ(n lg∗∗ n),5 one has α(m, n) = O(1), and therefore (a) includes the
result that T can be indexed in O(n lg∗∗ n) bits of space to support path minimum queries in
O(1) time and O(1) accesses to the weights of nodes.

5 lg∗∗ n stands for the number of times an iterated logarithm function lg∗ needs to be applied to n in
order for the result to become at most 1.
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3 Reducing to lower dimensions

This section presents a general framework for reducing the problem of answering a d-di-
mensional query to the same query problem in (d − 1) dimensions, by generalizing the
standard technique of range tree decomposition for the case of tree topologies weighted
with multidimensional vectors. To describe this framework, we introduce a d-dimensional
semigroup path sum query problem which is a generalization of all the query problems we
consider in this paper. Let (G, ⊕) be a semigroup and T a tree on n nodes, in which each
node x is assigned a d-dimensional weight vector w(x) and a semigroup element g(x), with
the semigroup sum operator denoted as ⊕. Then, in a d-dimensional semigroup path sum
query, we are given a path Px,y in T, an orthogonal query range Q in d-dimensional space,
and we are asked to compute⊕

z∈Px,y and w(z)∈Q

g(z).

When the weight vectors of the nodes and the query range are both from a (d′, d, ϵ)-dimensional
space, the (d′, d, ϵ)-dimensional semigroup path sum query problem is defined analogously.

3.1 Space reduction lemma for branching factor 2
Lemma 6 presents our framework for solving a d-dimensional semigroup path sum query
problem; its counterpart in (d′, d, ϵ)-dimensional space is given in Section 3.2.

The query procedure described in Lemma 6 mimics the search in a multidimensional
range tree [8].

▶ Lemma 6. Let d be a positive integer constant. Let G(d−1) be an s(n)-word data structure
for a (d−1)-dimensional semigroup path sum problem of size n. Then, there is an O(s(n) lg n+
n)-word data structure G(d) for a d-dimensional semigroup path sum problem of size n, whose
components include O(lg n) structures of type G(d−1), each of which is constructed over a tree
on n + 1 nodes. Furthermore, G(d) can answer a d-dimensional semigroup path sum query
by performing O(lg n) (d − 1)-dimensional queries using these components and returning the
semigroup sum of the answers. Determining which queries to perform on structures of type
G(d−1) requires O(1) time per query.6

Proof. We define a conceptual range tree R with branching factor 2 over the dth weights
of the nodes of T and represent it using hierarchical tree extraction as in Section 2.4. For
each level l of the range tree, we define a tree T ∗

l with the same topology as Tl. We assign
(d − 1)-dimensional weight vectors and semigroup elements to each node, x′, in T ∗

l as follows.
If x′ is not the dummy root, then w(x′) is set to be w1,d−1(x), where x is the node of
T corresponding to x′. We also set g(x′) = g(x). If x′ is the dummy root, then its first
(d − 1) weights are −∞, while g(x′) is set to an arbitrary element of the semigroup. We then
construct a data structure, Gl, of type G(d−1), over T ∗

l . The data structure G(d) comprises
the structures Tl and Gl, over all l. The range tree has O(lg n) levels, each T ∗

l has n + 1
nodes, and the Gls are the O(lg n) structures of type G(d−1) referred to in the statement.
By the exposition of hierarchical tree extraction in Section 2.4, all the structures Tl in total
occupy n + O(n) words, and G(d) therefore occupies O(s(n) lg n + n) words.

6 It may be tempting to simplify the statement of the lemma by defining t(n) as the query time of G(d−1)

and claiming that G(d) can answer a query in O(t(n) lg n) time. However, this bound is too loose when
applying this lemma to reporting queries.
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Figure 3 An illustration of the proof of Lemma 6. Shown is a root-to-leaf path that contains
both xv and zv. Double circles represent the nodes with weights falling into the range of v’s jth child.
They are retrieved via a call to level_ancj(Tl, ·, 1). The nodes x′ and z′ are the nodes corresponding
respectively to level_ancj(Tl, xv, 1) and level_ancj(Tl, zv, 1) in the next level of the hierarchy of
extractions

Next we show how to use G(d) to answer queries. Let Px,y be the query path and
Q =

∏d
j=1[qj , q′

j ] be the query range. To answer the query, we first decompose Px,y into Ax,z,
{z}, and Ay,z, where z is the lowest common ancestor of x and y, found in O(1) time via
LCA in T1. It suffices to answer three path semigroup sum queries using each subpath and Q

as query parameters, as the semigroup sum of the answers to these queries is the answer to
the original query. Since the query on subpath {z} reduces to checking whether w(z) ∈ Q,

we show how to answer the query on Ax,z; the query on Ay,z is then handled analogously.
To answer the query on Ax,z, we perform a standard top-down traversal in the range tree.
Let v be the node that we are currently visiting, in the range tree R. We maintain current
nodes, xv and zv (initialized as respectively x and z) local to the current level l; they are the
nodes in Tl that correspond to the Tv-views of the original query nodes x and z. Nodes xv

and zv are kept up-to-date in O(1) time as we descend the levels of the range tree. Namely,
when descending to the jth (j ∈ {0, 1}) child of the node v, we identify, via Lemma 3, the
corresponding nodes in Tl+1, for the nodes level_ancj(Tl, xv, 1) and level_ancj(Tl, zv, 1),
as illustrated in Figure 3.

Recall (see e.g. [8]) that in a traversal over a range tree, there are five essential mutual
configurations for the query range [qd, q′

d] and the range [a, b] corresponding to the current
node v of the range tree. In order for the present article to be self-sufficient, we describe each
of these five cases. The first two symmetrical cases are when q′

d ≤ c and when c + 1 ≤ qd,

where c = a+b
2 ; that is, the query range is completely contained within one of the subtrees of

v, and the case is dealt trivially by descending into the respective child subtree, and solving
the problem recursively therein. The third case, a < qd ≤ c < q′

d < b, occurs at most once
during the entire traversal. It generates the remaining two symmetrical configurations: the
left subtree with range [a, c] and the effective query range [qd, c], and the right one with the
range [c + 1, b] and the effective query range [c + 1, q′

d]. It is thus sufficient to show how to
handle the latter two cases.

CGT
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In view of symmetry, let us consider the case when for the node v at level l of the range
tree, one has a < qd ≤ c and q′

d = b. (We need not consider the case in which qd ≥ c + 1 and
d′

d = b, because it is subsumed in the second case described in the previous paragraph.) For
the right child subtree of v, we perform a (d − 1)-dimensional semigroup range sum query
with the following arguments: (i) the query range [q1, q′

1] × [q2, q′
2] × . . . × [qd−1, q′

d−1] (i.e.
we drop the last range); and (ii) the query path is Axu,zu , where xu and zu are the nodes
in Tl+1 corresponding to the Tu-views of x and z, with u being the right child of v; this is
analogous to updating xv and zv, i.e. applying Lemma 3 to the nodes level_anc1(Tl, xv, 1)
and level_anc1(Tl, zv, 1). Having performed this (d − 1)-dimensional query, we proceed to
the left child of v.

In the case a = qd and c+1 ≤ q′
d < b, a symmetrical procedure is performed by considering

the left child of v for the (d − 1)-dimensional query, and descending further to the right child.
At each level l of the range tree, therefore, we perform no more than 2 queries.
The semigroup sum of the answers to these O(lg n) queries is the answer to the original

query. ◀

3.2 Space reduction lemma for non-constant branching factor
Presented in this section is a general framework for reducing the problem of answering a
(d′, d, ϵ)-dimensional query to the same query problem in (d′ − 1, d, ϵ) dimensions, by general-
izing the approach of JáJá et al. [20] for the case of trees weighted with multidimensional
vectors.

▶ Lemma 7. Let d and d′ be positive integer constants such that d′ ≤ d, and ϵ be a constant
in (0, 1). Let G(d′−1) be an s(n)-word data structure for a (d′ − 1, d, ϵ)-dimensional semigroup
path sum problem of size n. Then, there is an O(s(n) lg n/ lg lg n + n)-word data structure
G(d′) for a (d′, d, ϵ)-dimensional semigroup path sum problem of size n, whose components
include O(lg n/ lg lg n) structures of type G(d′−1), each of which is constructed over a tree
on n + 1 nodes. Furthermore, G(d′) can answer a (d′, d, ϵ)-dimensional semigroup path sum
query by performing O(lg n/ lg lg n) (d′ − 1, d, ϵ)-dimensional queries using these components
and returning the semigroup sum of the answers. Determining which queries to perform on
structures of type G(d′−1) requires O(1) time per query.

Proof. We define a conceptual range tree with branching factor f = O(lgϵ n) over the d′th

weights of the nodes of T and represent it using hierarchical tree extraction as in Section 2.4.
For each level l of the range tree, we define a tree T ∗

l with the same topology as Tl. We
assign (d′ − 1, d, ϵ)-dimensional weight vectors and semigroup elements to each node, x′, in
T ∗

l , as follows. If x′ is not the dummy root, then w(x′) is set to be

(w1(x), . . . , wd′−1(x), λ(Tl, x′), wd′+1(x), . . . , wd(x)),

where x is the corresponding node of x′ in T, and λ(Tl, x′) is the label assigned to x′ in
Tl. We also set g(x′) = g(x). If x′ is the dummy root, then its first d′ − 1 weights are
−∞ and last d − d′ + 1 weights are −⌈lgϵ n⌉, while g(x′) is set to an arbitrary element
of the semigroup. We further construct a data structure, Gl, of type G(d′−1), over T ∗

l .
The data structure G(d′) then comprises the structures Tl and Gl, over all l. The range
tree has O(lg n/ lg lg n) levels and each T ∗

l has n + 1 nodes, and the structures Gl are the
O(lg n/ lg lg n) structures of type G(d′−1) referred to in the statement. By the exposition
of hierarchical tree extraction in Section 2.4, all the Tls in total occupy n + O(n) words.
Therefore, G(d′) occupies O(s(n) lg n/ lg lg n + n) words.
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Next we show how to use G(d′) to answer queries. Let Px,y be the query path and
Q =

∏d
j=1[qj , q′

j ] be the query range. As discussed in the proof of Lemma 6, it suffices to
describe the handling of the path Ax,z, where z is the lowest common ancestor of x and y.

To answer the query on Ax,z, we perform a top-down traversal in the range tree to identify
the up to two nodes at each level representing ranges that contain at least one of qd′ and q′

d′ .
For each node v identified at each level l, we perform a (d′ − 1, d, ϵ)-dimensional semigroup
range sum query with parameters computed as follows: (i) the query path is Pxv,zv , where
xv and zv are the nodes in Tl corresponding to the Tv-views of x and z; and (ii) the query
range is Qv = [q1, q′

1] × [q2, q′
2] × . . . × [qd′−1, q′

d′−1] × [iv, jv] × [qd′+1, q′
d′+1] × . . . × [qd, q′

d],
such that the children of v representing ranges that are entirely within [qd′ , q′

d′ ] are children
iv, iv + 1, . . . , jv (“child i” refers to the ith child); no queries are performed if such children
do not exist. The semigroup sum of these O(lg n/ lg lg n) queries is the answer to the original
query. It remains to show that the parameters of each query are computed in O(1) time per
query. By Section 2.4, iv and jv are computed in O(1) time via simple arithmetic, which is
sufficient to construct Qv. Nodes xv and zv are computed in O(1) time each time we descend
down a level in the range tree: Initially, when v is the root of the range tree, xv and zv are
nodes x and z in T1. When we visit a child, vj , of v whose range contains at least one of
qd′ and q′

d′ , we compute (via Lemma 3) xvj as the node in Tl+1 corresponding to the node
level_ancj(Tl, xv, 1) in Tl, which uses constant time. Node zvj

is located similarly. ◀

4 Ancestor dominance reporting

This section proposes a solution to the ancestor dominance reporting problem. Our solution
is designed around the layers of maxima paradigm [7]. We consider a partial ordering of
the nodes of a weighted tree, in which two nodes are in relation iff one is the ancestor of
the other, and its weight is greater than that of the other. We then design data structures
that allow iteration through a layer of maximal elements of this partial ordering, as well as
switching from one layer to the next.

This section comprises Sections 4.1–4.4. In Section 4.1, we solve the (1, d, ϵ)-dimensional
path dominance reporting problem, which asks one to enumerate the nodes in the query
path whose weight vectors dominate the query vector. Then, in Section 4.2, we motivate
our data structures for solving the 2D ancestor dominance reporting problem using the
above-mentioned concepts from its Euclidean counterpart. In Section 4.3, we design the
data structures for solving the 2D ancestor dominance reporting problem, and analyze their
space cost. Finally, Section 4.4 describes the query algorithm on the data structures built in
Section 4.3, and presents our result for the 2D ancestor dominance reporting problem.

From this section onward, the results presented in Section 2.5 will be used.

4.1 Path dominance in (1, d, ϵ)

The strategy employed in Lemma 8 is that of zooming into the extraction dominating the
query point in the last (d − 1) weights, and therein reporting the relevant nodes based on
the 1st weight and tree topology only.

▶ Lemma 8. Let d ≥ 1 be a constant integer and 0 < ϵ < 1
d−1 be a constant number. A tree

T on m ≤ n nodes, in which each node is assigned a (1, d, ϵ)-dimensional weight vector, can
be represented in m + O(m) words, so that a path dominance reporting query can be answered
in O(1 + k) time, where k is the number of reported nodes.

CGT
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Figure 4 Illustration to the proof of Lemma 8. A part of the tree containing Px,z is shown. The
shaded nodes in T represent the nodes belonging to the extraction Tq′ . The node t is the nodes with
the largest 1st weight among the extracted nodes in Az,x. Dotted arrows show corresponding nodes

Proof. We represent T using Lemma 2. For any vector g = (g1, g2, . . . , gd−1) in (0, d − 1, ϵ)
dimensions, we consider a conceptual 1D-weighted tree Eg by first extracting the node set
G = {x | x ∈ T and w2,d(x) ⪰ g} from T . The weight of a non-dummy node in Eg is the 1st

weight of its T -source. If Eg has a dummy root, then its weight is −∞.
Instead of storing Eg explicitly, we create the following structures, the first two of which

are built for any possible (0, d − 1, ϵ)-dimensional vector g:

The indicator tree (Definition 1) Tg of (T, Eg);
A succinct index Ig for path maximum queries in Eg (using Lemma 5(a));
An array W1 where W1[x] stores the 1st weight of the node x in T ;
A table C which stores pointers to Tg and Ig for each possible g.

For any node x′ ∈ Eg, its T -source x equals pre_select1(Tg, x′). Then, the weight of x′

is W1[x]. With this O(1)-time access to node weights in Eg, by Lemma 5 we can use Ig to
answer path maximum queries in Eg in O(1) time.

We now show how to answer a path dominance reporting query in T . Let Px,y and
q = (q1, q2, . . . , qd) be respectively the path and the weight vector given as query parameters.
First, we use C to locate Tq′ and Iq′ , where q′ = q2,d. As discussed in the proof of
Lemma 6, it suffices to show how to answer the query with Ax,z as the query path, where
z = LCA(T, x, y). To that end, we fetch the Eq′ -view, x′, of x, using Proposition 1 and
analogously the view, z′, of z. Next, Iq′ locates a node t′ ∈ Ax′,z′ with the maximum weight.
If the weight of t′ is less than q1, then no node in Ax,y can possibly have a weight vector
dominating q, and our algorithm is terminated without reporting any nodes. Otherwise, the
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T -source t of t′ is located as in Proposition 1. The node t ∈ T then claims the following two
properties: (i) as Tq′ contains a node corresponding to t, one has w2,d(t) ⪰ q′; and (ii) as
w1(t) equals the weight of t′, it is at least q1. We therefore have that w(t) ⪰ q and duly
report t. Afterwards, we perform the same procedure recursively on paths Ax′,t′ and As′,z′

in Eq′ , where s′ is the parent of t′ in Eq′ and can be computed as the Eq′ -view of the parent
of t, using Proposition 1. See Figure 4 for an illustration.

To analyze the running time, the key observation is that we perform path maximum
queries using Iq′ at most 2k + 1 times. Since both each query itself and the operations
performed to identify the query path use O(1) time, our algorithm runs in O(1 + k) time.

To analyze the space cost, we observe that W1 occupies m words. The total number of
possible (0, d − 1, ϵ)-dimensional vectors is O(lg(d−1)ϵ n). Since each Tg uses O(m) bits and
each Ig uses O(m lg∗∗ m) bits, the total space space cost of storing Tgs and Igs for all possible
vectors g is O((m + m lg∗∗ m) lg(d−1)ϵ n) = O(m lg∗∗ m lg(d−1)ϵ n) ≤ O(m lg∗∗ n lg(d−1)ϵ n) =
O(m lg n) bits for any constant 0 < ϵ < 1/(d − 1), or O(m) words. Furthermore, C stores
O(lg(d−1)ϵ n) pointers. To reduce the space cost for each pointer, we concatenate the
encodings of all the Tgs and Igs and store them in a memory block of O(m lg n) bits. Thus,
each pointer stored in C can be encoded in O(lg(m lg n)) bits, and the table C thus uses
O((lg m + lg lg n) log(d−1)ϵ n) = O(lg m log(d−1)ϵ n) + O(lg lg n log(d−1)ϵ n) = O(lg m lg n) +
O(lg n) = O(lg m lg n) bits for any constant 0 < ϵ < 1/(d−1), which is O(lg m) words. Finally,
the encoding of T using Lemma 2 is 2m + O(m) bits. Therefore, the total space cost is
m + O(m) words. ◀

4.2 2-maximal nodes
In order to motivate the data structures in this section, let us consider the following what
we shall call naïve approach for 2D dominance reporting in Euclidean space. Given a set of
points, let us build a range tree over the y-axis. Each node of the range tree is associated
with a subset of points stored at the leaves of its subtree: namely, the set of “maximal”
points in the sense that no two points dominate each other. It is then clear that each point
of the original point-set is accounted for – namely, it is associated with a (unique) node of
the range tree. Secondly, at each node u of the range tree, it is sufficient to keep the points
sorted by, say, y coordinate, so that reporting is done in O(lg n + k) time. Finally, for a
query q = (a, b), during the traversal of the range tree, we need to consider the right sibling
of the (range tree) node u iff its largest x-coordinate is at least a.

We design a solution to the 2-dimensional ancestor dominance reporting problem by
largely imitating the naïve approach. First, we generalize the notion of 2-dominance in
Euclidean space, to weighted trees. Precisely, in a tree T in which each node is assigned a
d-dimensional weight vector, we say that a node x 2-dominates another node y iff x ∈ A(y)
and w1(x) > w1(y). Then a node x is defined to be 2-maximal iff no other node in T

2-dominates x. An example of a 2-maximal set of nodes is given in Figure 5.
Secondly, we imitate the “summary” feature of the naïve approach, i.e. the ability to

efficiently decide whether to consider the right sibling of a range-tree node. In our case,
the fan-out of the range tree is not 2, and therefore we bootstrap using the data structures
presented in Section 4.1. Namely, we extract the nodes that can possibly dominate a query
tuple. The key is that a certain component of the weight vector is re-coded according to
the range-tree subtree the respective tuple belongs to. Then, the extraction is pre-processed
using the data structure from Section 4.1. Whenever a query to this data structure returns a
node, we know precisely which siblings one needs to explore. These intuitions aid our further,
more precise, discussions.
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Figure 5 The 2-maximal set in a tree T weighted over σ = 10. The numbers inside the circles
represent the assigned weights. The 2-maximal set is shown in shaded circles. The shaded nodes in
any upward path form a decreasing sequence

The following property of the maximal nodes is immediate: Given a set, X, of 2-maximal
nodes, let TX be the corresponding extraction from T . Let the weight of a node x′ ∈ TX

be the 1st weight of its T -source x. Then, in any upward path of TX , the node weights
are strictly decreasing, and therefore the weighted ancestor problem [10] is defined. In this
problem, one is given a weighted tree with monotonically decreasing node weights along any
upward path. We pre-process such a tree to answer weighted ancestor queries, which, for
any given node x and value κ, ask for the highest ancestor of x whose weight is at least κ.
Farach and Muthukrishnan [10] presented an O(n)-word solution that answers this query in
O(lg lg n) time, for an n-node tree weighted over [n]. With an easy reduction we can further
achieve the following result:

▶ Lemma 9. Let T be a tree on m ≤ n nodes, in which each node is assigned a weight
from [n]. If the node weights along any upward path are strictly decreasing, then T can be
represented using O(m) words to support weighted ancestor queries in O(lg lg n) time.

Proof. Let W be the set of weights actually assigned to the nodes of T . We replace the
weight, h, of any node x in T by the rank of h in W, which is in [m]. We then represent the
resulting tree T ′ in O(m) words to support a weighted ancestor query in T ′ in O(lg lg m)
time [10]. We also construct a y-fast trie [29], Y, on the elements of W ; the rank of each
element is also stored with this element in Y. Y uses O(m) space. Given a weighted ancestor
query over T , we first find the rank, κ, of the query weight in W in O(lg lg n) time by
performing a predecessor query in Y, and κ is further used to perform a query in T ′ to
compute the answer. ◀

4.3 Data structures for 2D ancestor dominance reporting
We tackle the 2-dimensional ancestor dominance problem with the following data structures.
We define a conceptual range tree R with branching factor f = ⌈lgϵ n⌉ over the 2nd weights
of the nodes in T and represent T using hierarchical tree extraction as in Section 2.4. Let
v be a node in this range tree R, and let Rl denote the level l of R. In Tv, we assign to
each node the weight vector of the T -source and call the resulting weighted tree T (v). We
then define M(v) as follows: If v is the root of the range tree, then M(v) is the set of all
the 2-maximal nodes in T . Otherwise, let u be the parent of v. Then a node, t, of T (v) is
in M(v) iff t is 2-maximal in T (v) and its corresponding node in T (u) is not 2-maximal in
T (u). Thus, for any node x in T, there exists a unique node v in the range tree such that
there is a node in M(v) corresponding to x. Furthermore, for a non-leaf node v ∈ R we
define the set N(v) as the set {t ∈ T | ∃ a child v′ of v such that t ∈ M(v′)}.
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We further conceptually extract two trees from Tl : (i) Ml is an extraction from Tl of the
node set

{x | x ∈ Tl and ∃ a node u ∈ Rl s.t. x has a corresponding node in M(u)};

while (ii) Nl is an extraction from Tl of the node set

{x | x ∈ Tl and ∃ a node v ∈ Rl s.t. x has a corresponding node in N(v)}.

Figure 6 provides an example of the trees Ml and Nl.

Furthermore, for each level l, we also create the following sets of data structures (when
defining these structures, we assume that the root, rl, of Tl corresponds to a dummy node s′

in T with weight vector (−∞, −∞); the node s′ is omitted when determining the rank space,
preorder ranks, and depths in T ). Each set of the data structures can be conceptualized as a
pair, consisting of a reporting structure proper and a certain navigational, auxiliary data
structure; below we introduce them in this particular order.

One set comprises the structures Dl and Al, defined as follows:

Dl is a 1-dimensional path dominance reporting structure (Lemma 8) over the tree
obtained by assigning weight vectors to the nodes of Ml as follows: each node x′ of Ml is
assigned a scalar weight w2(x), where x is the node of T corresponding to x′;
Al is a weighted ancestor query structure over Ml (Lemma 9), when its nodes are assigned
the 1st weights of the corresponding nodes in T.

Another set comprises the structures El and Fl, defined as follows:

El is a 1-dimensional path dominance reporting structure (Lemma 8) over the tree
obtained by assigning weight vectors to the nodes of Ml as follows: Each node x′ of Ml

is assigned a scalar weight w1(x), where x is the node of T corresponding to x′;
Fl is a (1, 2, ϵ)-dimensional path dominance reporting structure (Lemma 8) over the tree
obtained by assigning weight vectors to the nodes of Nl as follows: Each node x′ of Nl

is assigned (w1(x), κ), where x is the node of T corresponding to x′, and κ is the label
assigned to the node in Tl corresponding to x′.

Finally, the following data structures are also maintained:

T ′
l , the indicator tree of (Tl, Ml);

T ′′
l , the indicator tree of (Tl, Nl);

Pl, an array where Pl[x] stores the preorder number of the node in T corresponding to a
node x in Ml.

The features of some of these data structures are summarized in Table 2. The following
Lemma 10 states the space cost of our data structures.

▶ Lemma 10. The data structures built in Section 4.3 occupy O(n) words of space.

Proof. As mentioned in Section 2.4, all the Tls occupy n + O(n) words. By Lemma 2, each
T ′

l or T ′′
l uses 3n + O(n) bits, so over all the lg n/ lg lg n levels, they occupy O(n lg n/ lg lg n)

bits, which is O(n/ lg lg n) words. As discussed earlier, we know that, for any node x in T ,
there exists one and only one node v in the range tree such that there is a node in M(v)
corresponding to x. Furthermore, M(v)s only contain nodes that have corresponding nodes
in T. Therefore, the sum of the sizes of all the M(v)s is precisely n. Hence all the Pls have n

entries in total and thus uses n words. By Lemma 8, the size of each Dl in words is linear in

CGT



8:18 Path and Ancestor Queries

14
10 8

16 14 13 2

15 9 12 511 3

7 6

𝑟2

4 1 8

7 6 2

5 3

10 1113

14

916 12

15
𝐹1,8 𝐹9,16

4 1 2 7 6 8 10 11 14

1316

15

129
3 5

𝑟3

𝐹1,4 𝐹5,8

𝐹9,12

𝐹13,16

1 2 4 3 6 5 7 8 10 12 11 14 16

9 13 15
𝐹1,2 𝐹3,4 𝐹5,6 𝐹7,8

𝐹9,10

𝐹11,12

𝐹13,14 𝐹15,16

𝑟4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑟5

𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

Figure 6 Hierarchical tree extraction with branching factor 2 for a tree weighted over {1, 2, . . . , 16}
(weights are given with the nodes). For each l ∈ {1, 2, 3, 4, 5}, blue, circle-shaped nodes in Tl are the
nodes extracted to construct Ml, while green, hexagon-shaped nodes in Tl are the nodes extracted
to construct Nl
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Nodes Assigned Weights Query Source

Dl ∀x′ ∈ Ml w2(x) 1D ancestor dominance reporting Lemma 8
Al ∀x′ ∈ Ml w1(x) weighted ancestor Lemma 9
El ∀x′ ∈ Ml w1(x) 1D ancestor dominance reporting Lemma 8
Fl ∀x′ ∈ Nl (w1(x), label(x′′)), x′′ ∈ Tl (1, 2, ϵ)-dimensional ancestor dominance Lemma 8

Table 2 Summary table for the data structures Dl, Al, El, and Fl built in Section 4.3. Denoted
by w(x) is the original weight of the node x ∈ T that corresponds to x′. In the last row, x′′ is the
node in Tl corresponding to x

the number of nodes in Ml. The sum of the numbers of nodes in the Mls over all levels of
the range tree is equal to the sum of the sizes of all the M(v)s plus the number of dummy
roots, which is n + O(lg n/ lg lg n). Therefore, all the Dls occupy O(n) words. By similar
reasoning, all the Els and Als occupy O(n) words in total. Finally, it is also true that, for
any node x in T , there exists a unique node v in the range tree such that there is a node in
N(v) corresponding to x. Thus, we can upper-bound the total space cost of all the Fls by
O(n) words in a similar way. All our data structures, therefore, use O(n) words. ◀

4.4 Supporting 2D ancestor dominance reporting
When delving into details of the search algorithm, it may be useful to recall the discussions
in the beginning of Section 4.2. A synopsis of the somewhat more detailed exposition given
therein could then go as follows. The search in the 2D case proceeds by eliminating the second
weight from consideration and heeding the first weight only. One employs two strategies to
that end, each necessitated by the anatomy of range trees. Recall again that when descending
down a path in the range tree, the nodes of interest are those lying on the path together
with their right siblings. If a (range tree) node is strictly to the right of the search path, we
are left with only the first weight to worry about. Otherwise, the second weight is eliminated
using the monotonicity property of the maximal nodes. Finding out the right siblings to
explore is a “meta” query of its own, which is now (1, 2, ϵ)-dimensional owing to “small”
second weights.

Having thus dealt with a higher-level view, we now describe the algorithm for answering
queries in detail, and analyze its time complexity:

▶ Lemma 11. The data structures built in Section 4.3 answer an ancestor dominance
reporting query in O(lg n + k) time, where k is the number of reported nodes.

Proof. Let x and q = (q1, q2) be the node and the weight vector given as query parameters,
respectively. We define Π as the path in the range tree between and including the root and
the leaf storing q2. Let πl denote the node at level l in Π; then the root of the range tree
is π1. To answer the query, we perform a traversal of a subset of the nodes of the range
tree, starting from π1. The invariant maintained during this traversal is that a node u of
the range tree is visited iff one of the following two conditions holds: (i) u = πl for some l;
or (ii) M(u) contains at least one node whose corresponding node in T must be reported.
We now describe how the algorithm works when visiting a node, v, at level l of this range
tree, during which we shall show how the invariant is maintained. Let xv denote the node in
Tl that corresponds to the Tv-view of x; xv can be located in constant time each time we
descend down one level in the range tree, as described in the proof of Lemma 6. Our first
step is to report all the nodes in the answer to the query that have corresponding nodes in
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M(v). It is clear that since those nodes occur only in M(v), this is the only place to discover
them. There are two cases depending on whether (i) v = πl or (ii) v ̸= πl; this condition can
be checked in constant time by determining whether q2 belongs to the range represented by
v. In either of these cases, we first locate the Ml-view, x′

v, of xv, using Proposition 1.
If (i) holds, then the non-dummy ancestors of x′

v in Ml correspond to all the ancestors of
x in T that have corresponding nodes in M(v). We then perform a weighted ancestor query
using Al to locate the highest ancestor, y, of x′

v in Ml whose 1st weight is at least q1. Since
the 1st weights of the nodes along any upward path in Ml are decreasing, the 1st weights of
the nodes in path Px′

v,y are greater than or equal to q1, while those of the proper ancestors
of y are strictly less. Hence, by performing a 1-dimensional path dominance reporting query
in Dl using Px′

v,y as the query path and q′ = (q2) as the query weight vector, we can find all
the ancestors of x′

v whose corresponding nodes in T have weight vectors dominating q. Then,
for each of these nodes, we retrieve from Pl its corresponding node in T which is further
reported.

If (ii) holds, the maintained invariant guarantees that the 2nd weights of the nodes in M(v)
are greater than q2. Therefore, by performing a 1-dimensional path dominance reporting
query in El using the path between (inclusive) x′

v and the root of Ml as the query path
and q′′ = (q1) as the query weight vector, we can find all the ancestors of x′

v in Ml whose
corresponding nodes in T have weight vectors dominating q. By mapping these nodes to
nodes in T via Pl, we have reported all the nodes in the answer to the query that have
corresponding nodes in M(v).

After we handle both cases, the next task is to decide which children of v we should
visit. Let vi denote the ith child of v. We always visit πl+1 if it happens to be a child of
v. To maintain the invariant, for any other child vi, we visit it iff there exists at least one
node in M(vi) whose corresponding node in T should be reported. To find the children that
we will visit, we locate the Nl-view, x′′

v , of xv, using Proposition 1. Then the non-dummy
ancestors of x′′

v correspond to all the ancestors of x in T that have corresponding nodes in
∪i=1,2,...M(vi). We then perform a (1, 2, ϵ)-dimensional path dominance reporting query in
Fl using the path between (inclusive) x′′

v and the root of Nl as the query path and (q1, κ + 1)
as the query weight vector if πl+1 is the κth child of v, and we set κ = 0 if πi+1 is not a child
of v. For each node, t, returned when answering this query, if its 2nd weight in Fl is j, then t

corresponds to a node in M(vj). Since the node corresponding to t in T should be included
in the answer to the original query, we iteratively visit vj if we have not visited it before
(checked using an f -bit word to flag the children of v). Figure 7 illustrates the considerations
in this paragraph.

The total query time is dominated by the time used to perform queries using Al, Dl, El and
Fl. We only perform one weighted ancestor query when visiting each πl, and this query is not
performed when visiting other nodes of the range tree. Given the O(lg n/ lg lg n) levels of the
range tree, all the weighted ancestor queries collectively use O(lg lg n×(lg n/ lg lg n)) = O(lg n)
time. Similarly, we perform one query using Dl at each level of the range tree, and the query
times summed over all levels is O(lg n/ lg lg n + k). Our algorithm guarantees that, each time
we perform a query using El, we report a not-reported hitherto, non-empty subset of the
nodes in the answer to the original query. Therefore, the queries performed over all Els use
O(k) time in total.

Querying the Fl-structures incurs O(k) time cost when visiting nodes not in Π, and
O(lg n/ lg lg n + k) time when visiting nodes in Π. Indeed, Fl is built using Lemma 8 and
therefore has O(1 + k) query time. Per a range-tree node in Π we pay O(1) to initiate the
search, hence the O(lg n/ lg lg n) additive factor. On the other hand, the O(1)-time cost of
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Figure 7 An illustration for the proof of Lemma 11. When visiting πl+1, we use the Al structure
to adjust query parameters. When deciding which children, among κ + 1, . . . , f, to visit, we use the
Fl structure

initiating the search is charged to a tree node that has been reported during the visit of the
current range-tree node outside of Π.

We thus conclude that the query times spent on all these structures throughout the
execution of the algorithm sum up to O(lg n + k). ◀

Finally, Lemma 10 and Lemma 11 are combined to produce

▶ Theorem 12. A tree T on n nodes, in which each node is assigned a 2-dimensional weight
vector, can be represented in O(n) words, so that an ancestor dominance reporting query can
be answered in O(lg n + k) time, where k is the number of reported nodes.

5 Path successor

We first solve the path successor problem when d = 1, and extend the result to d > 1 via
Lemma 6.

On a high level, the data structure for the one-dimensional path successor is built as
follows. For a tree weighted with scalars, one considers a range tree over its scalar weights;
henceforth, R denotes this range tree. Befitting the range trees paradigm, each node of the
thus-constructed range tree R contains certain summary structures. First, they maintain
the corresponding tree extraction, for an efficient lookup of the path component of the
query. Secondly, they allow fast successor queries. As previously, all the tree extractions Tu

corresponding to a single level l of the range tree R are accommodated inside a single data
structure Tl.

The query algorithm proceeds as a binary search over a certain path in the range tree R:
This path leads from the root of R to the leaf containing the query weight. The goal is to
locate summary structures that can be used to compute the answer.

For the binary search to work, one needs to be able to map the query path to the paths
in summary structures. In Section 5.1, we describe a certain subroutine that maps a query
node to a node in the summary structure. Then, the query algorithm itself is described in
Section 5.2.
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5.1 Core subroutine for node mapping
This section focuses on the following situation. One is given a node x ∈ T, as well as a node
u ∈ R, belonging to the level l of the range tree R. The goal is to locate the node xu,l in Tl

that corresponds to the Tu-view of x.

To achieve these results, we build the following data structures. The topology of T is
stored using Lemma 2. We define a binary range tree R over [n], and build the associated
hierarchical tree extraction as in Section 2.4; as in Section 4, Tl denotes the auxiliary tree
built for each level l of R, and Tv denotes the tree extraction from T associated with the range
of node v ∈ R. We represent R using Lemma 2, and augment it with the ball-inheritance
data structure B from Lemma 4(a), as well as with the following data structures.

First, for R, we maintain an annotation I, such that I[u] stores a quadruple ⟨au, bu, su, tu⟩
for an arbitrary node u ∈ R at level l, such that

(i) the weight range associated with u is [au, bu]; and
(ii) all the nodes of T with weights in [au, bu] occupy precisely the preorder ranks su through

tu in Tl.

Furthermore, for each level L that is a multiple of ⌈lg lg n⌉, which we call a marked level,
we build the following data structures. For each individual node u on marked level L of R,

we define a conceptual array Au, which stores, in increasing order, the (original) preorder
ranks of all the nodes of T whose weights are in the range represented by u. Rather than
maintaining Au explicitly, we store a succinct index, Su, for predecessor/successor search [14]
in Au. Assuming the availability of a O(nδ)-bit universal table, where δ is a constant in (0, 1),
given an arbitrary value in [n], this index can return the position of its predecessor/successor
in Au in O(lg lg n) time plus accesses to O(1) entries of Au.

▶ Lemma 13. The data structures built in Section 5.1 occupy O(n) words of space.

Proof. The space occupied by the annotation array I is clearly O(n) words, because the
number of nodes in R is O(n).

The size of the index in bits is O(lg lg n) times the number of entries in Au. For a marked
(for that matter, any) level L all the Su-structures thus sum up to O(n lg lg n) bits. There
being O(lg n/ lg lg n) marked levels, the total space cost for the Su-structures over the entire
tree R is O(n) words. ◀

Prior to proceeding to Lemma 14, which is concerned with the actual query algorithm,
some notes are in order.

For a node u ∈ R at a level l, and a node x ∈ T , the query can be thought of as a chain
of transformations T → Tu → Tl. In the first transition, T → Tu, given an original node
x ∈ T , we are looking for its Tu-view, xu. That is, although Tu is (conceptually) obtained
from T through a series of extractions (i.e. as we construct the range tree), the wish is to
“jump” many successive extractions at once, as if Tu were extracted from T directly. This
would be trivial to achieve through storing an indicator tree per range u, i.e. for each pair
(T, Tu), if it were not for a prohibitive space-cost – the number of bits at least quadratic in
the number of nodes. One can avoid extra space cost altogether and directly use Lemma 3 to
explicitly traverse the hierarchy of extractions. In this case, the time cost is proportional to
the height of the range tree, and hence becomes the bottleneck. To overcome this difficulty,
we use the predecessor/successor structure Su to speed up the process, while the strategy of
marking a subset of levels keeps the space usage linear.
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Figure 8 An illustration to the proof of Lemma 14. Node x, which could have weight in u’s range
or not, is represented by a dash-dotted circle. The subfigures (a) and (b) respectively represent the
cases in which the weight of s is in and not in u’s range

In turn, in the Tu → Tl-transition, we are looking for the identity of xu in Tl. For this
second transformation, we recall from Section 2.4 that Tu is embedded within Tl, and the
nodes of Tu must lie contiguously in the preorder sequence of Tl.

Lemma 14 shows how to perform node mapping. Our annotation arrays Iu then use this
observation to perform the transformation.

▶ Lemma 14. The data structures built in Section 5.1 enable determining xu,l ∈ Tl corre-
sponding to the Tu-view of x ∈ T, in O(logϵ′

n) time, where ϵ′ is an arbitrary constant in
(0, 1), for an arbitrary node x ∈ T and an arbitrary node u ∈ R residing on a level l.

Proof. Let us show how to answer queries using the data structures built in Section 5.1.
Resolving a query falls into two distinct cases. The first is when the level l, at which the
query node u resides, is marked; the second is when it is not.

When the level l is marked, we use the structures Su stored therein, directly. We adopt
the strategy of He et al. [18] to find xu,l. First, for an arbitrary index i to Au, we observe that
the node Au[i] ∈ T corresponds to the node (su + i − 1) in Tl. We thus fetch ⟨au, bu, su, tu⟩
from I[u]. Then the predecessor p ∈ Au of x is obtained through Su via an O(lg lg n)-time
query and O(1) calls to the B-structure. This results in O(lgϵ′

n) time in total. We then
determine the lowest common ancestor s ∈ T of x and p, in O(1) time. Further, Figure 8
illustrates the two possible cases for the weight of the node s: it either belongs to the range
[au, bu], or it does not.

If the weight of s is in [au, bu], then it must be present in Au by the latter’s very definition.
By another predecessor query, therefore, we can find the position, j, of s in Au, and (su +j−1)
is the sought xu,l. This case subsumes all the corner cases, too. Indeed, if the node x’s weight
was from [au, bu] to begin with, the predecessor query would duly return p = x; if p ̸= x and
p ∈ A(x), then p = s.

If the weight of s is not in [au, bu], a final query to Su returns the successor t in Au of s;
the node t must exist because of p. Let κ be the position of t in Au. Then the parent of the
node (su + κ − 1) in Tl is the sought node xu,l. Indeed, it is clear that the sought node xu,l

should correspond to a proper ancestor of s. A valid choice to reach such an ancestor would
be via the preorder successor t of s such that t’s weight is in [au, bu]; no other nodes between
t and s have weights in [au, bu].

We perform a constant number of predecessor/successor queries, and correspondingly
a constant number of calls to the ball-inheritance problem. The time complexity is thus
O(lgϵ′

n).
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Figure 9 Illustration to the proof of Lemma 14. Marked levels are shown in dashed lines. Level l

corresponds to the query node u, and is represented as a dotted line. The node u′ is the ancestor of
the node u on the marked level l′. One ascends from the level l to the marked level l′ via level_anc
available through the encoding of the binary tree R. The node u′′ represents any node on the path
from u to u′, at a level l′′ such that l′ ≤ l′′ ≤ l

When the level l is not marked, we ascend to the lowest ancestor u′ of u residing on
a marked level l′, and reduce the problem to the previous case. More precisely, via the
navigation operations (level_anc to move to a parent, and depth to determine whether
the level is marked) available through R’s encoding, we climb up at most ⌈lg lg n⌉ levels to
the closest marked level l′. Let u′ be therefore the ancestor of u found on that marked level
l′. We then find the node x′

u′,l′ in Tl′ that corresponds to the Tu′ -view of the node x in T.

Afterwards, we initialize a variable s to be xu′,l′ . At each level l′ ≤ l′′ ≤ l this variable s

represents the node x′′
u′′,l′′ ∈ Tl′′ that corresponds to the Tu′′ -view of the node x ∈ T ; here

u′′ is the node of the range tree such that it is an ancestor of u and a descendant of u′. We
descend down to the original level l, back to the original query node u, all the while adjusting
the node s as we move down a level, analogously to the proof of Lemma 6. As we arrive, in
time O(lg lg n), at node u, the variable s stores the answer, xu,l. Figure 9 facilitates these
discussions.

In the second case, too, the term O(lgϵ′
n) dominates the time complexity, as climbing

from the current level up to the closest marked level7 and back is an additive term of
O(lg lg n). Therefore, the query is answered in O(lgϵ′

n) time. ◀

To conclude the section, Lemmas 13 and 14 can be combined to produce

▶ Lemma 15. Let R be a binary range tree with topology encoded using Lemma 2, and
augmented with the ball-inheritance data structure B from Lemma 4(a). With an additional
space of O(n) words, the node xu,l in Tl corresponding to the Tu-view of x can be found in
O(logϵ′

n) time, where ϵ′ is an arbitrary constant in (0, 1), for an arbitrary node x ∈ T and
an arbitrary node u ∈ R residing on a level l.

7 One could reach the marked level in one leap, in O(1) time, using level_anc. This however has no
bearing on the asymptotical time bound, because we later descend to the original level one level at a
time, anyway.
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Lq1

Figure 10 Illustration to the proof of Lemma 16. Finding the path successor amounts to locating
the deepest node such that its right child contains the answer to the query. For the path successor
query with parameters [q1, ∞) and Px,y, one would like to efficiently “intersect” the path Px,y with
a 1D range corresponding to a shaded triangle. Shaded triangles represent the right children of the
nodes on a root-to-leaf path leading to Lq1

5.2 Answering path successor queries
Having dealt in Section 5.1 with the subroutine for node mapping, we now proceed to the
actual solution.

Here, in addition to the data structures built in Section 5.1, each Tl is further augmented
with succinct indices ml (resp. Ml) from Lemma 5(b), for path minimum (resp. path
maximum) queries; here, the weights of the nodes of Tl are the weights of their corresponding
nodes in T. With this, we are now ready to describe, in Lemma 16, the algorithm for
answering queries. The idea is to conduct binary search in the path from the root of the
range tree R to the leaf corresponding to the query weight, to look for the lowest ancestor,
πf , of this leaf such that its extracted tree contains the answer. At each iteration, we use
the data structures built in Section 5.1 for fast adjustments of the query path. Then, the
extracted tree corresponding to the right child of πf must contain the answer. And, since all
the nodes in this extracted tree have weights greater than the query weight, a path minimum
query computes the final result.

▶ Lemma 16. A 1D-weighted tree T on n nodes can be represented in O(n) words, so that a
path successor query is answered in O(lgϵ n) time, where ϵ is an arbitrary constant in (0, 1).

Proof. Let x, y and Q = [q1, q′
1] be respectively the nodes and the orthogonal range given as

query parameters. As in the proof of Lemma 6, we focus only on the path Ax,z, where z

is LCA(T, x, y). We locate in O(1) time the leaf Lq1 of R that corresponds to the singleton
range [q1, q1]. Let Π be the root-to-leaf path to Lq1 in R, and let πl be the node at level l of
Π; Figure 10 shows such a path schematically. We binary search in Π for the deepest node
πf ∈ Π whose associated extraction Tπf

contains the node corresponding to the answer to
the given query, as follows.

We initialize two variables: high as 1 so that πhigh is the root of R, and low as the height
of R so that πlow is the leaf Lq1 . We first check whether Tπlow

already contains the answer,
by fetching the node x′ in Tlow corresponding to the Tπlow

-view of x, using Lemma 15. If
x′ exists, we examine its corresponding node x′′ in T (fetched via B). We check whether
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x′′ is on Ax,z, using depth and level_anc operations. If x′′ ∈ Ax,z, then x′′ is the final
answer. If not, this establishes the invariant of the ensuing search: Tπhigh

contains a node
corresponding to the answer, whereas Tπlow

does not.
At each iteration, therefore, we set (via level_anc in R) πmid to be the node mid-way

from πlow to πhigh. We then fetch the nodes x′, z′ in Tmid corresponding to the Tπmid
-views

of respectively x and z, using Lemma 15. The non-existence of x′ or the emptiness of Ax′,z′

sets low to mid, and the next iteration of the search ensues. (If z′ does not exist, z′ is set to
the root of Tmid.) A query to the Mmid-structure then locates a node in Ax′,z′ for which the
1st weight, µ, of its corresponding node in T is maximized. Accounting for the mapping of
a node in Tmid to its corresponding node in T via B, this query uses O((lgϵ′

n)α(n)) time.
The variables are then updated by setting high to mid if µ ≥ q1, and by setting low to mid,

otherwise.
Once πf is located, it must hold for πf that (i) it is its left child that is on Π [26];

and (ii) its right child, v, contains the query result, even though v represents a range of
values all larger than q1. When locating πf , we also found the nodes in Tf corresponding
to the Tπf

-views of x and z; they can be further used to find the nodes in Tf+1, x∗ and z∗,
corresponding to the Tv-views of x and z. We then use mf+1 to find the node in Ax∗,z∗

with the minimum 1st weight, whose corresponding node in T is the answer.
The total query time is determined by that needed for binary search. Each iteration

of the binary search is in turn dominated by the path maximum query in Tmid, which is
O((lgϵ′

n)α(n)). Given the O(lg n) levels of R, the binary search has O(lg lg n) iterations.
Therefore, the total running time is O(lg lg n · lgϵ′

n · α(n)) = O(lgϵ n) if we choose ϵ′ < ϵ.

To analyze the space cost, we observe that the topology of T , represented using Lemma 2,
uses only 2n + O(n) bits. As stated in Section 2.4, all the structures Tl occupy O(n) words
in total. The space cost of the structure from Lemma 15 built for R is O(n) words. The
B-structure occupies another O(n) words. The ml- and Ml-structures occupy O(n) bits each,
or O(n) words in total over all levels of R. Thus, the final space cost is O(n) words. ◀

Combining Lemmas 6 and 16, we arrive at the following

▶ Theorem 17. Let d ≥ 1 be a constant integer. A tree T on n nodes, in which each node is
assigned a d-dimensional weight vector can be represented in O(n lgd−1 n) words, so that a
path successor query can be answered in O(lgd−1+ϵ n) time, for an arbitrarily small positive
constant ϵ.

Proof. We instantiate Section 3 with g(x) = x and the semigroup sum operator ⊕ as
x⊕y = arg min

t∈{x,y}
{w1(t)}. Lemma 6 applied to Lemma 16 yields the space bound of O(n lgd−1 n)

words and the query time complexity of O(lgd−1+ϵ n). ◀

6 Path counting

In this section, we use a tree decomposition technique called tree covering. This is different
from other sections, where we use tree extraction.

Section 6.1 introduces tree covering. Based on the exposition, we shall summarize the
main idea of solving the path counting problem for the base case of trees weighted with
(0, d, ϵ)-dimensional weight vectors. Then, Section 6.2 lays out the details of solving the
path counting problem in the base case, which is further generalized to trees weighted with
d-dimensional weight vectors, via the space-reduction approach described in Section 3.2.
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6.1 High-level overview
Tree covering first appeared in [13, 17, 11] as a method of succinct representation of ordinal
trees. The original tree is split into mini-trees, given a certain parameter L:

▶ Lemma 18 ([11]). A tree with n nodes can be decomposed into Θ(n/L) subtrees of size at
most 2L. These are pairwise disjoint aside from the subtree roots. Furthermore, aside from
the edges incident to the subtree roots, there is at most one edge per subtree leaving a node of
a subtree to its child in another subtree.

Figure 11 (a) gives an example of tree covering with parameter L = 3.
An interesting feature of tree covering is that each of the mini-trees, in turn can, be

recursively decomposed into micro-trees, with another parameter L′ < L. For example, in
Figure 11 (a), we further decompose the mini-trees into micro-trees, using L′ = 2.

It turns out that when the weight vector of a node can be packed into O(lg n) bits, counting
queries can be executed in constant time. The key machinery used is tree covering. Namely,
we decompose the input tree T into mini- and micro-trees using respectively parameters
L and L′. At the root of each mini-tree, we precompute for each possible query weight
range, how many nodes between the mini-tree root and the root of the entire tree T have
weight vectors in this range. Similarly for micro-trees: For each possible (0, d, ϵ)-dimensional
hyper-rectangle, we precompute the same information, now from the root of the micro-tree
to the root of the encompassing mini-tree. The key is to choose the parameter L′ such that
intra-micro-tree queries are executed in constant-time via a lookup into precomputed table.
Then, the answer to a query is computed in three steps – the query node to micro-tree root,
micro-tree root to the mini-tree root, and mini-tree root to the root of T .

6.2 Data structures
Let, indeed, T be a given ordinal tree on n nodes, each node of which is assigned a weight
vector in (0, d, ϵ) dimensions. Let r be the root of T. In our solution to the (0, d, ϵ)-dimensional
path counting problem for T, we set c = ⌈lgϵ n⌉, and use Lemma 18 to decompose T into mini-
trees with parameter L = c2d lg n. Each of the mini-trees is further subject to decomposition
into micro-trees with parameter L′ = c2d. We chose the parameter L′ so that intra-micro-tree
queries are executed in constant-time by virtue of a precomputed table T of size O(n),
indexed by micro-trees. For any given node x ∈ T, the solutions of [13, 17, 11] provide
constant-time access to the mini-tree τ and micro-tree τ ′ containing the node x, as well as
the address of the micro-tree τ ′ in the table T , using O(n) bits of space.

Furthermore, let us denote by rb the root of a mini- or micro-tree b, for any b that shall
be clear from the context. Each mini- or micro-tree b stores an array b.cnt, indexed by a
tuple from ([c] × [c])d, with the following contents:

for a mini-tree b, an O(lg n)-bit number b.cnt[Q] stores the number of the nodes with
weight vectors falling within the range Q on the path Arb,r in T, where r is the root of T ;
for a micro-tree b′ inside a mini-tree b, an O(lg lg n)-bit number b′.cnt[Q] stores the
number of the nodes with weight vectors falling within the range Q on the path Arb′ ,rb

.

We also precompute a look-up table D that is indexed by a quadruple from the following
Cartesian product:

all possible micro-tree topologies τ, times
all possible assignments λ of weight vectors to the nodes of τ, times
all nodes in τ , times

CGT
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Figure 11 Tree covering of Farzan and Munro [11] is shown in Figure (a), for parameter L = 3.

Mini-trees are outlined via red solid lines. The mini-trees can share roots only, and there is at most
one arc leading from a non-root node of a mini-tree to the root of another mini-tree. Figures (a)-(b)
illustrate the proof of Lemma 19, when L = 3 and L′ = 2. Mini- and micro-trees are represented
by solid and dashed lines, respectively. For simplicity, decompositions to micro-trees are shown
for two mini-trees only. For a query node x, we show the root rb of the mini-tree b and the root
rb′ of a micro-tree b′ containing x. In Figure (b), a mini-tree from (a) is further decomposed into
micro-trees, represented by dashed lines. The roots rb′ and rb′′ of the micro-trees store precomputed
information only up until the root rb of the encompassing mini-tree
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all possible query orthogonal ranges Q.

Let λ be a labeling of a micro-tree τ with (0, d, ϵ)-dimensional weight vectors. Then the
entry D[τ, λ, x, Q] stores the number of nodes on the path Ax,rτ

in τ, such that their weight
vectors belong to the range Q.

We now show how to use these data structure to answer queries.

▶ Lemma 19. The data structures in this section can answer a (0, d, ϵ)-dimensional path
counting query in O(1) time, for any constant integer d ≥ 1.

Proof. Let Px,y and Q be, respectively, the path and the orthogonal range given as the
parameters to the query. For the reasons given in Lemma 6, we describe only how to answer
the query over Ax,z, where z = LCA(T, x, y). We assume the encoding of T as in Lemma 2,
so the LCA operator is available; the space overhead is only O(n) bits, i.e. negligible with
respect to the space bound we are ultimately aiming at.

We further notice that answering the path counting query over Ax,z is equivalent to
answering two path counting queries, one over Ax,r and another over Az,r, and taking their
arithmetic difference. It is thus sufficient to describe the procedure of answering the query
over Ax,r, and analyze its running time, as the query over Az,r can be handled similarly.

The key observation is that overall we perform a constant number of constant-time
operations. Indeed, using data structures of [11], we first identify, in O(1) time, the
mini-tree b and the micro-tree b′ containing the node x, as well as the encoding of b′

(see Figure 11 for an illustration). From the (disjoint) decomposition of the path Ax,r =
Ax,rb′ ∪ Arb′ ,rb

∪ Arb,r, it is now immediate that the answer to the query over Ax,r is
resx = D[b′, lab(b′), x′, Q] + b.cnt[Q] + b′.cnt[Q], where lab(b′) is the labeling of the micro-
tree b′, and x′ is the preorder number of the node x ∈ T in b′, provided by the standard
encodings [13, 17, 11]. One finds the answer resz to the path counting query over Az,r

analogously. Then the final answer is resx − resz. Therefore, our algorithm runs in O(1)
time. ◀

We now analyze the space cost of our data structures.

▶ Lemma 20. The data structures in this section occupy O(n lg lg n) bits when ϵ ∈ (0, 1
4d ).

Proof. To analyze the space cost, we tally up the costs of the main constituents of our data
structure: the cnt-arrays stored at the roots of each mini- and micro-tree, and the D-table.

There being Θ( n
c2d lg n

) mini-trees, each of which contains an array of c2d elements, O(lg n)
bits each, the associated cnt-arrays contribute O( n

c2d lg n
× c2d × lg n) = O(n) bits.

Analogously, for the Θ(n/c2d) micro-trees, the net contribution of the associated cnt-arrays
is O(n/c2d×c2d× lg (c2d lg n)) = O(n lg lg n) bits, which is the space claimed in the statement.

It suffices to show, therefore, that the space occupied by the D-structure can not exceed
O(n lg lg n) bits; as demonstrated below, it is much less. Indeed, as mentioned in Lemma 18,
each micro-tree can have up to 2L′ = 2c2d nodes, which gives us less than 22·2L′ = 22·2c2d

possible topologies τ. In turn, each of the 2c2d nodes can independently be assigned cd possible
weight vectors; hence the number of possible configurations λ is at most (cd)2c2d (the number
of strings of length 2c2d over alphabet [cd]). Furthermore, the c2d query orthogonal ranges Q

make for 2c2d×c2d = 2c4d distinct queries, i.e. the number of nodes times the number of ranges.
The number of entries in the table D is thus O(24c2d · (cd)2c2d · 2c4d) = O((4cd)2c2d

c4d). The
term c4d is O(lg n). To upper-bound the term (4cd)2c2d

, we notice that cd = ⌈lgϵ n⌉d < 4
√

lg n/4
for sufficiently large n. Therefore, we have the following chain of inequalities for sufficiently
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large n:

(4cd)2c2d

<
(

4
√

lg n
)2c2d

<
(

4
√

lg n
)2

√
lg n

=
(√

lg n
)√

lg n

=
(

2lg
√

lg n
)√

lg n

= 2
√

lg n·lg
√

lg n < 2
√

lg n·
√

lg n

2 =
√

n

Thus, the number of entries in D is at most O(
√

n lg4dϵ n). Each entry holding a value of
O(lg c2d) = O(lg lg n) bits, the table D occupies O(

√
n lg lg n lg4dϵ n) = O(n) bits, in total.

Finally, as shown above, the number of ways to assign weight vectors to nodes of a
micro-tree is a O(L′ lg lg n)-bit number. Thus, the storage space for the labelings of each of
the Θ(n/L′) micro-trees amounts to O(n lg lg n) bits. ◀

With Lemmas 19 and 20, we have the following

▶ Lemma 21. Let d ≥ 0, ϵ ∈ (0, 1
4d ) be constants. A tree T on n nodes, in which each node

is assigned a (0, d, ϵ)-dimensional weight vector, can be represented in O(n lg lg n) bits of
space such that a path counting query is answered in O(1) time.

Finally, instantiating Section 3.2 with g(x) ≡ 1 and ⊕ as the regular arithmetic addition
operation + in R, we can apply Lemma 7 to Lemma 21 iteratively to obtain the following

▶ Theorem 22. Let d ≥ 1 be a constant integer. A tree T on n nodes, in which each node is
assigned a d-dimensional weight vector, can be represented in O(n(lg n/ lg lg n)d−1) words
such that a path counting query can be answered in O((lg n/ lg lg n)d) time.

7 Path reporting

In this section, we solve the path reporting problem. The solution immediately follows from
combining the ideas in Section 4.1 , Section 3.2. and the result of Chan et al. [4].

More specifically, we first design a solution for solving the path reporting problem for
trees weighted with (1, d, ϵ)-dimensional weight vectors. This solution is then generalized to
trees weighted with d-dimensional weight vectors, via the space-reduction approach described
in Section 3.2.

Analogously to Section 4.1, a d-dimensional version of the problem is reduced to solving
a (1, d, ϵ)-dimensional problem: For each possible (d − 1)-dimensional hyper-rectangle, we
precompute the data structure for solving the relevant 1-dimensional problem. In turn, for
solving the 1-dimensional version of the problem, we use the following result of Chan et
al. [4]:

▶ Lemma 23 ([4]). An ordinal tree on n nodes whose weights are drawn from [n] can be
represented using O(n lgϵ n) words of space, such that path reporting queries can be supported
in O(lg lg n + k) time, where k is the number of reported nodes and ϵ is an arbitrary positive
constant.

Lemma 23 implies the following

▶ Lemma 24. Let d ≥ 1 and 0 < ϵ < 1
2(d−1) be constants, and let T be an ordinal tree on n

nodes, in which each node is assigned a (1, d, ϵ)-dimensional weight vector. Then, T can be
represented in O(n lgϵ′

n) words of space, for any constant ϵ′ ∈ (2(d − 1)ϵ, 1), so that a path
reporting query can be answered in O(lg lg n + k) time, where k is the number of reported
nodes.
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Proof. In brief, we build a path reporting data structure from Lemma 23 for each possible
orthogonal range over the last (d − 1) dimensions. When presented with a query, we directly
proceed to the appropriately-tagged (by the last (d − 1) weights) reporting structure, and
launch the query therein. A detailed exposition follows.

We assume the encoding of T as in Lemma 2; the space incurred is only O(n) bits, i.e.
negligible with respect to the terms derived below.

For any (0, d − 1, ϵ)-dimensional orthogonal range G, we build an explicit weighted tree
EG as the extraction of the node set {v | v ∈ T and w2,d(v) ∈ G} from T . The weight of a
node in EG is the 1st weight of its T -source. If EG has a dummy root, then its weight is −∞.

EG is represented using Lemma 23, in space that is at most O(n lgδ n) words, for an
arbitrarily small positive δ. In order to adjust the nodes between T and EG, indicator tree
TG of (T, EG) is maintained.

Accounting for all possible ranges G, we therefore have O(n lgδ+2(d−1)ϵ n) words of space,
in total. Setting δ to be sufficiently small and assigning (δ + 2(d − 1)ϵ) to ϵ′ justifies the
space claimed. All the TG-structures collectively occupy O(n lg2(d−1)ϵ n) bits of space, which
is O(n) words.

Let Px,y and Q be, respectively, the path and the orthogonal range given as the query
parameters. Using the notation of Lemma 6, and for the same reasons as given therein, we
concern ourselves only with answering the query over the path Ax,z, where z = LCA(T, x, y).
To answer the query, we first locate the relevant tree EQ′ , where Q′ = Q2,d, and launch a path
reporting query in EQ′ , having adjusted the nodes x and z to their TQ′ -views as described
in Proposition 1. Finally, the one-dimensional query in EQ′ executes in O(lg lg n + k) time,
by Lemma 23, thereby establishing the claimed time bound. Each returned node x’s original
identifier is recovered as in Proposition 1. ◀

Instantiating Section 3.2 with g(x) = {x} and the semigroup sum operator ⊕ as the
set-theoretic union operator ∪, Lemma 7 and Lemma 24 combined imply the following

▶ Theorem 25. Let d ≥ 2 be a constant integer. A tree T on n nodes, in which each node is
assigned a d-dimensional weight vector, can be represented in O(n lgd−1+ϵ n) words such that
a path reporting query can be answered in O((lgd−1 n)/(lg lg n)d−2 + k) time where k is the
number of reported nodes, for an arbitrarily small positive constant ϵ.

8 Conclusion

This article proposes solutions to the ancestor dominance reporting, path successor, path
counting and path reporting problems, over ordinal trees weighted with multidimensional
weight vectors. These problems generalize the classical orthogonal range searching problems,
to the case of one dimension being replaced by a tree topology.

In solving these problems, we combine diverse data-structuring ideas and propose a few
novel techniques that could be of interest in their own right.

We propose a linear-space, O(lg n + k) query time data structure for the 2D ancestor
dominance reporting problem. This data structure matches the corresponding space bound
for 3D dominance reporting of [1, 3]. When extended to d ≥ 3, our data structures are still
inferior to the combination of existing techniques in tree pre-processing with the latest results
in dominance reporting [24]. Improving upon the latter is an open problem.

We solve the path successor problem in O(n lgd−1 n) words and time O(lgd−1+ϵ n) for
d ≥ 1 and an arbitrary constant ϵ > 0. We propose a solution to the path counting problem,
with O(n(lg n/ lg lg n)d−1) words of space and O(( lg n

lg lg n )d) query time, for d ≥ 1. These
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results match or nearly match the best trade-offs of the respective range queries. We are
also the first to solve path successor even for d = 1.

Finally, we solve the path reporting problem in O(n lg1+ϵ n) words of space and O(lg n+k)
query time, for d = 2. This is a good result for d = 2, because the space remains the same as
in the state-of-the-art solution for the Euclidean counterpart, whereas the slowdown in the
additive term is sub-logarithmic. For d ≥ 3, we propose an O(n lgd−1+ϵ n) words-of-space,
and O( lgd−1 n

(lg lg n)d−2 + k) query-time solution. Thus for d ≥ 3, we independently achieve what
can be achieved by the state-of-the-art [25] result in the corresponding problem in Rd+1, in
conjunction with heavy-path decomposition [28]. The result of Nekrich [25], however, was
published after the preliminary version of the present article, and is more complex.

By the dint of any two nodes uniquely determining a path, tree topologies generalize
one-dimensional arrays. And when tree degenerates into a single path, the path query
problems and their Euclidean counterparts become identical. The big question is how far
this similarity stretches, and for which classes of problems can one hope to close the gap
between the best results on the either side?
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