
On the Pathwidth of Hyperbolic 3-Manifolds
Kristóf Huszár !

Inria Sophia Antipolis - Méditerranée and Université Côte d’Azur, France

Abstract
According to Mostow’s celebrated rigidity theorem, the geometry of closed hyperbolic 3-manifolds is
already determined by their topology. In particular, the volume of such manifolds is a topological
invariant and, as such, has been investigated for half a century.

Motivated by the algorithmic study of 3-manifolds, Maria and Purcell have recently shown that
every closed hyperbolic 3-manifoldM with volume vol(M) admits a triangulation with dual graph
of treewidth at most C · vol(M), for some universal constant C.

Here we improve on this result by showing that the volume provides a linear upper bound even
on the pathwidth of the dual graph of some triangulation, which can potentially be much larger than
the treewidth. Our proof relies on a synthesis of tools from 3-manifold theory: generalized Heegaard
splittings, amalgamations, and the thick-thin decomposition of hyperbolic 3-manifolds. We provide
an illustrated exposition of this toolbox and also discuss the algorithmic consequences of the result.
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1 Introduction

Algorithms in computational 3-manifold topology typically take a triangulation as input and
return topological information about the underlying manifold. The difficulty of extracting the
desired information, however, might greatly depend on the choice of the input triangulation.
In recent years, several computationally hard problems about triangulated 3-manifolds
were shown to admit algorithmic solutions that are fixed-parameter tractable (FPT) in the
treewidth1 of the dual graph of the input triangulation [12, 13, 14, 15, 16].2 These algorithms
still require exponential time to terminate in the worst case. However, for triangulations
with dual graph of bounded treewidth they run in polynomial time.3,4

In the light of these algorithms, it is compelling to consider the treewidth tw(M) of a
compact 3-manifoldM, defined as the smallest treewidth of the dual graph of any triangulation
thereof. Over the last few years, the quantitative relationship between the treewidth and

1 The treewidth is a structural graph parameter measuring the “tree-likeness” of a graph, cf. Section 3.
2 For related work on FPT-algorithms in knot theory, see [10] and [35] and the references therein.
3 The running times are measured in terms of the number of tetrahedra in the input triangulation.
4 Some of these algorithms [14, 16] have been implemented in the topology software Regina [8, 11].
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1:2 On the Pathwidth of Hyperbolic 3-Manifolds

other properties of 3-manifolds has been studied in various settings.5 The author together
with Spreer showed, for instance, that the Heegaard genus always gives an upper bound on
the treewidth (even on the pathwidth) [25], and together with Wagner they established that,
for certain families of 3-manifolds the treewidth can be arbitrary large [26].6

Recently, Maria and Purcell have shown that, in the realm of hyperbolic 3-manifolds
another important invariant, the volume, yields an upper bound on the treewidth [36]. They
proved the existence of a universal constant C > 0, such that, for every closed hyperbolic
3-manifoldM with treewidth tw(M) and volume vol(M) the following inequality holds:

tw(M) ≤ C · vol(M). (1)

In this article we improve upon (1) by showing that the volume provides a linear upper
bound even on the pathwidth of a hyperbolic 3-manifold—a quantity closely related to, but
potentially much larger than the treewidth. More precisely, we prove the following theorem.

I Theorem 1. There exists a universal constant C ′ > 0 such that, for any closed, orientable
and hyperbolic 3-manifoldM with pathwidth pw(M) and volume vol(M), we have

pw(M) ≤ C ′ · vol(M). (2)

Outline of the proof. Our roadmap to establish Theorem 1 is similar to that in [36]. In
particular, our construction of a triangulation ofM with dual graph of pathwidth bounded
in terms of vol(M) also starts with a thick-thin decomposition D of M. The two proofs,
however, diverge at this point. Maria and Purcell proceed by triangulating the thick part of
D using the work of Jørgensen–Thurston [60, §5.11] and Kobayashi–Rieck [33]. This partial
triangulation is then simplified [9, 28] and completed into the desired triangulation ofM.

The novelty in our work is, that we proceed by first turning the decomposition D into a
generalized Heegaard splitting ofM [52, 53], where we rely on the aforementioned results to
control the genera of the splitting surfaces. Next, we amalgamate this generalized Heegaard
splitting into a classical one [54]. Finally, we appeal to our earlier work [25] to turn this
Heegaard splitting into a triangulation ofM with dual graph of pathwidth O(vol(M)).

The proof of Theorem 1 provides a template for an algorithm7 to triangulate any closed
hyperbolic 3-manifoldM in such a way, that the dual graph of the resulting triangulation has
pathwidth O(vol(M)). Using such triangulations—that have a dual graph not only of small
treewidth, but also pathwidth—as input for FPT-algorithms may significantly reduce their
running time. This is because such triangulations lend themselves to nice tree decompositions
(the data structure underlying many algorithms FPT in the treewidth) without join bags
(those parts of a nice tree decomposition that often account for the computational bottleneck,
cf. [13]). The upshot of Theorem 1 is that, in case of hyperbolic 3-manifolds with bounded
volume working with such triangulations is (in theory) always possible.

Structure of the paper. We start with an illustrated exposition of the various notions from
3-manifold theory we rely on (Section 2). Then, in Section 3, we discuss the treewidth and
pathwidth for graphs and 3-manifolds alike. In Section 4, we put all the pieces together to
prove Theorem 1. We conclude with a discussion and some open questions in Section 5.

5 See [18] for related work in knot theory concerning a different notion of treewidth for knot diagrams.
6 For the precise statements of these results cf. the inequalities (10) and (11) in Section 3. For further
results and a detailed discussion we refer to the author’s PhD thesis [24].

7 We refer to the discussion in [36, Section 5.1] for the description of a possible computational model.
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2 A primer on 3-manifolds

The main objects of study in this paper are 3-dimensional manifolds, or 3-manifolds for short.
As we will also encounter 2-manifolds, also known as surfaces, we give the general definition.
A d-dimensional manifold with boundary is a topological space8 M such that each point
x ∈M has a neighborhood which looks like (i.e., is homeomorphic to) the Euclidean d-space
Rd or the closed upper half-space {(x1, . . . , xd) ∈ Rd : xd ≥ 0}. The points ofM that do not
have a neighborhood homeomorphic to Rd constitute the boundary ∂M ofM. A compact
manifold is said to be closed if it has an empty boundary.

Two manifolds M1 and M2 are considered equivalent if they are homeomorphic, i.e.,
if there exists a continuous bijection f : M1 → M2 with f−1 being continuous as well.
Properties of manifolds that are preserved under homeomorphisms are called topological
invariants. We refer to [55] for an introduction to 3-manifolds (cf. [23, 27, 50, 59]).

All 3-manifolds in this paper are assumed to be compact and orientable.

2.1 Triangulations and handle decompositions
Triangulations. By a classical result of Moise [40] (cf. [4]) every compact 3-manifold admits
a triangulation. To build a triangulation, take a disjoint union ∆̃ = ∆1 ∪ . . . ∪∆n of finitely
many abstract tetrahedra with 4n triangular faces altogether. Let Φ = {ϕ1, . . . , ϕm} be a
set of at most 2n face gluings, each of which identifies a pair of these triangular faces in such
a way that vertices are mapped to vertices, edges to edges, and each face is identified with
at most one other face, see Figure 1(i). The resulting quotient space T = ∆̃/Φ is called
a triangulation, and the pairs of identified triangular faces are referred to as triangles of
T . Note that these face gluings might identify several tetrahedral edges (or vertices) of ∆̃
resulting in a single edge (or vertex) of T .

To obtain a triangulation T that is homeomorphic to a closed 3-manifold M, it is
necessary and sufficient that the boundary of a small closed neighborhood around each vertex
is a sphere, and no edge is identified with itself in reverse. If some of the vertices have closed
neighborhoods with boundaries (relative to T ) being disks, then T describes a 3-manifold
with boundary. In a computational setting, a 3-manifold is very often presented this way.

In the study of triangulations, their dual graphs play an instrumental role.9 Given a
triangulation T = ∆̃/Φ, its dual graph Γ(T ) = (V,E) is a multigraph10 where the nodes in V
correspond to the tetrahedra in ∆̃, and for each face gluing ϕ ∈ Φ identifying two triangular
faces of ∆i and ∆j , we add an arc between the corresponding nodes in V , cf. Figure 1(ii).
(Note that i and j could be equal.) By construction, every node of Γ(T ) has maximum
degree ≤ 4. Moreover, when T triangulates a closed 3-manifold, then Γ(T ) is 4-regular.

Handle decompositions. It follows from Morse theory (and also from the existence of
triangulations) that every compact 3-manifold can be built from finitely many solid building
blocks called 0-, 1-, 2-, and 3-handles. In such a handle decomposition all handles are
homeomorphic to 3-balls, and are only distinguished in how they are glued together. To

8 More precisely, we only consider topological spaces which are second countable and Hausdorff.
9 Following a convention adopted by several authors in the field of computational low-dimensional topology,
throughout this paper we use the terms edge and vertex to refer to an edge or vertex in a 3-manifold
triangulation, whereas the terms arc and node denote an edge or vertex in a graph, respectively.

10 In a multigraph G = (V, E) the set E of arcs is a multiset, i.e., there might be multiple arcs running
between two given nodes. Moreover, an arc itself can also be a multiset in which case it is called a loop.
Next, when talking about graphs, we will always mean multigraphs, unless otherwise stated.
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(ii) Γ(T )(i) T
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Figure 1 (i) A triangulation T = ∆̃/Φ with two tetrahedra ∆̃ = {∆1, ∆2} and three face gluing
maps Φ = {ϕ1, ϕ2, ϕ3}. ϕ1 is specified to be ∆1(123)

ϕ1←→ ∆2(103). (ii) The dual graph Γ(T ) of T .

construct a closed 3-manifold from handles, we may start with a disjoint union of 3-balls, or
0-handles, where further 3-balls are glued to the boundary of the existing decomposition along
pairs of 2-dimensional disks (1-handles), or along annuli (2-handles). This process is iterated
until the boundary consists of a disjoint union of 2-spheres. These are then eliminated by
gluing in one 3-ball per boundary component, the 3-handles of the decomposition.

(ii)(i) (iii) (iv)

Figure 2 (i) A 0-handle, (ii) a 1-handle, (iii) a 2-handle, and (iv) a 3-handle. The attaching sites
are indicated with light blue. For a 1-handle, this is a disjoint union of two disks, for a 2-handle an
annulus, and for a 3-handle the entire 2-sphere boundary.

2.2 Handlebodies and compression bodies
A handlebody H is a connected 3-manifold with boundary that is built from (finitely many)
0-handles and 1-handles. It can also be seen as a thickened graph. Up to homeomorphism, a
handlebody H is determined by the genus g(∂H) of its boundary.

Let S be a compact, orientable (not necessarily connected) surface. A compression body is
a 3-manifold C obtained from S × [0, 1] by (optionally) attaching some 1-handles to S × {1},
and (optionally) filling in some of the 2-sphere components of S × {0} with 3-balls. C has
two sets of boundary components: ∂−C = S × {0} \ {filled-in 2-sphere components} and
∂+C = ∂C \ ∂−C. We call ∂+C the upper boundary, and ∂−C the lower boundary of C.

Dual to this construction, a compression body C can also be built by starting with a
closed, orientable surface F , thickening it to F × [0, 1], (optionally) attaching some 2-handles
along F × {0}, and (optionally) filling in some of the resulting 2-spheres with 3-balls. The
upper and lower boundary are given by ∂+C = F × {1} and ∂−C = ∂C \ ∂+C.

Note that every handlebody is also a compression body, where all 2-sphere components
are eliminated in the last step.

See Figure 12 in Appendix A for an illustration of the primal and dual constructions.
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2.3 Heegaard splittings
Introduced in [22], Heegaard splittings have been central to the study of 3-manifolds for over
a century. Given a closed, orientable 3-manifoldM, a Heegaard splittingM = H ∪S H′ is a
decomposition ofM into two homeomorphic handlebodies H and H′ with H ∪H′ =M and
H∩H′ = ∂H = ∂H′ = S called the splitting surface. The Heegaard genus g (M) ofM is the
smallest genus g(S) over all Heegaard splittings ofM. See [51] for a comprehensive survey.

I Example 2 (Heegaard splittings from triangulations, I). Given a triangulation T of a closed,
orientable 3-manifoldM, let T (1) denote its 1-skeleton consisting of the vertices and edges
of T . Thickening up T (1), i.e., taking its regular neighborhood, inM yields a handlebody
H1. The closure H2 of the complementM\H1 is also a handlebody homeomorphic to a
regular neighborhood of Γ(T ), andM = H1 ∪H2 is a Heegaard splitting ofM.

Heegaard splittings of 3-manifolds with boundary. Using compression bodies, one can
generalize Heegaard splittings to 3-manifolds with nonempty boundary. Let M be a 3-
manifold and ∂1M∪ ∂2M = ∂M be an arbitrary partition of its boundary components.
There exist compression bodies C1 and C2 with C1 ∪ C2 =M, ∂−C1 = ∂1M, ∂−C2 = ∂2M,
and C1 ∩ C2 = ∂+C1 = ∂+C2. The decompositionM = C1 ∪S C2 is called a Heegaard splitting
ofM compatible with the partition ∂1M∪ ∂2M. Its splitting surface is S = C1 ∩ C2. The
Heegaard genus g (M) is again the minimum genus g(S) over all such decompositions.

See Example 17 in Appendix B for an extension of Example 2 to this setting.

2.4 Generalized Heegaard splittings
The notion of a Heegaard splitting, where a 3-manifold is built by gluing two handlebodies
together (or two compression bodies, in case of 3-manifolds with boundary), was refined by
Scharlemann and Thompson in a seminal paper [53]. In a generalized Heegaard splitting a
3-manifold is constructed from several pairs of compression bodies. This construction arises
naturally, e.g., when a 3-manifold is assembled by first attaching only some of the 0- and
1-handles before attaching any 2- and 3-handles.

Informally, a generalized Heegaard splitting of a 3-manifoldM is a decomposition

D =
{
Mi : i ∈ I,

⋃
i∈IMi =M

}
(3)

of M into finitely many 3-dimensional submanifolds Mi with pairwise disjoint interiors,
intersecting along closed surfaces,11 together with an “appropriate” Heegaard splitting for
eachMi. We make this now precise. Our exposition is inspired by [3, Definition 2.7].

Given a decomposition D as above, consider its dual graph,12 which is a multigraph
Γ(D) = (I, E) with nodes corresponding to theMi and arcs between i and j to the connected
components ofMi∩Mj (Figure 3). Pick an ordering of I, i.e., a bijection ` : I → {1, . . . , |I|}.
For any i ∈ I, let ∂1Mi ∪ ∂2Mi be a partition of the connected components of ∂Mi so
that ∂1Mi (resp. ∂2Mi) contains the components glued to those of anyMj with `(j) < `(i)
(resp. `(j) > `(i)). Those components of ∂Mi which contribute to the boundary of M
are partitioned among ∂1Mi and ∂2Mi arbitrarily. For each i ∈ I, choose a Heegaard
splittingMi = Ni∪Si Ki ofMi compatible with the partition ∂1Mi∪∂2Mi of the boundary
components (cf. Example 17). We obtain a generalized Heegaard splitting ofM (Figure 4).

11That is, for i 6= j, the intersectionMi ∩Mj is either empty or is a closed surface. In particular, no
point x ∈M is incident to more than two submanifoldsMi in the decomposition.

12Not to be confused with the dual graph of a triangulation.

CGT



1:6 On the Pathwidth of Hyperbolic 3-Manifolds

I Remark 3. The fact that any decomposition D, satisfying the above assumptions, can
be turned into a generalized Heegaard splitting is exploited in the proof of Theorem 1 (see
Section 4), where we choose D to be a thick-thin decomposition of a hyperbolic 3-manifold.

(i)

1 2

3 4
M

M1
M2

M3 M4

(ii) (iii)

Figure 3 (i) Schematic of a closed 3-manifoldM with nontrivial first homology, (ii) a decomposi-
tion D ofM into four submanifolds, and (iii) the dual graph Γ(D) of D.

(i) (ii) (iii)

S2S1

S3 S4

S2S1

S4S3

S1 S2

S4S3

Figure 4 (i)–(ii) Schematics of two generalized Heegaard splittings of M stemming from the
decomposition shown on Figure 3. These splittings respectively correspond to the orderings `1(i) = i

(i ∈ I = {1, 2, 3, 4}), and `2(1) = 2, `2(2) = 4, `2(3) = 1, `2(4) = 3. (iii) A non-example.

When we only need to talk about the constituents of a decomposition or the pieces of a
generalized Heegaard splitting of a 3-manfioldM we use the shorthand notation

M =
⋃
i∈I
Mi or M =

⋃
i∈I

(Ni ∪Si
Ki), where Ni ∪Si

Ki =Mi. (4)

Fork complexes. When connectivity properties of the graph Γ(D) underlying a given
splitting are relevant, it may be more convenient to work with so-called fork complexes. Here
we give a brief overview of this language. For more details, see [52, Chapter 5].

A fork complex is essentially a decorated version of Γ(D). It is a labeled graph in which
the compression bodies of a given decomposition are modeled by forks. More precisely, an
n-fork is a tree F with n + 2 nodes V (F ) = {g, p, t1, . . . , tn} with p being of degree n + 1
and all other nodes being leaves. The nodes g, p, and the ti are called the grip, the root,
and the tines of F , respectively (Figure 5(i) shows a 0- and a 3-fork). We think of a fork
F = FC as an abstraction of a compression body C, such that the grip of F corresponds to
∂+C, whereas the tines correspond to the connected components of ∂−C.

root
grip

tine

(i) (ii) (iii) (iv)

Figure 5 Fork complexes of a Heegaard splitting (ii) and of generalized Heegaard splittings
(iii)–(iv). Reproduced from [26, Figure 1].
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Informally, a fork complex F (representing a given generalized Heegaard splitting of a
3-manifoldM) is obtained by taking several forks (corresponding to the compression bodies
which constituteM), and identifying grips with grips, and tines with tines (following the way
the boundaries of these compression bodies are glued together). The set of grips and tines
which remain unpaired is denoted by ∂F (as they correspond to surfaces which constitute
the boundary ∂M). See Figure 5 for illustrations, and [52, Section 5.1] for further details.

(i) (ii)

S1 S2

S3 S4

S1 S2

S3 S4

Figure 6 Fork complexes representing the generalized Heegaard splittings shown on Figure 4.

Amalgamations. Introduced by Schultens in [54], amalgamation is a useful procedure that
turns a generalized Heegaard splitting into a classical one. There are several excellent
references where amalgamations are discussed in detail (cf. [3, Section 2], [19, Section 2.3],
[52, Section 5.4]), therefore here we rely on a simple example to illustrate this operation.

LetM = (N1∪S1 K1)∪R (N2∪S2 K2) be a generalized Heegaard splitting ofM, which we
would like to amalgamate to form a classical Heegaard splittingM = N ∪S K, see Figure 7.
Every compression body C can be obtained by first taking the thickened version ∂−C × [0, 1]
of its lower boundary ∂−C and then attaching some 1-handles to ∂−C ×{1} (see steps P1 and
P2 in Figure 12). In our example ∂−K1 = R = ∂−N2, so K1 can be built from R× [−1, 0]
by attaching two 1-handles h(1)

1 and h(1)
2 along R× {−1}. Similarly, N2 is constructed by

taking R× [0, 1] and attaching the 1-handles h(2)
1 and h(2)

2 to R× {1}.
The amalgamation process consists of two steps: 1. Collapse R × [−1, 1] to R × {0},

such that the attaching sites of the 1-handles h(1)
1 , h(1)

2 , h(2)
1 and h

(2)
2 remain pairwise

disjoint. (This can be achieved by slightly deforming the attaching maps, if necessary.) 2.
Set N = N1 ∪ h(2)

1 ∪ h
(2)
2 and K = K2 ∪ h(1)

1 ∪ h
(1)
2 , see Figure 7(ii).

N1 N2K1 K2S1 S2R N KS

 

(ii)(i)
R× [−1, 1]

h
(1)
1

h
(1)
2

h
(2)
1

h
(2)
2

Figure 7 Amalgamating a generalized Heegaard splitting into a Heegaard splitting.

If R is connected, then for the genus of the amalgamated Heegaard surface S we have

g(S) = g(S1) + g(S2)− g(R). (5)

However, in case R has multiple connected components, then (5) does not hold anymore.
The procedure of amalgamation nevertheless works for arbitrary generalized Heegaard

CGT



1:8 On the Pathwidth of Hyperbolic 3-Manifolds

splittings (cf. Remark 5), and the formula (5) can be adapted to the general setting as follows,
by taking into account the Euler characteristic of the dual graph of the decomposition.

I Theorem 4 (Quantitative Amalgamation; cf. Theorems 2.8 and 2.9 in [3]).
1. Any generalized Heegaard splittingM =

⋃
i∈I(Ni ∪Si

Ki) of a given 3-manifoldM can
be amalgamated to a (classical) Heegaard splittingM = N ∪S K thereof.

2. Let D be the decompositionM =
⋃
i∈IMi underlying the generalized Heegaard splitting

above, and Γ(D) = (I, E) be its dual graph with Euler characteristic χ(Γ(D)). For any
e = {u, v} ∈ E, let Re be the connected component of Mu ∩Mv dual to e.13 Then the
genus g(S) of the amalgamated Heegaard surface S satisfies

g(S) =
∑
i∈I

g(Si)−
∑
e∈E

g(Re) + 1− χ(Γ(D)). (6)

I Remark 5. In the definition of generalized Heegaard splittings, ordering the vertices of
Γ(D) and choosing the Heegaard splittings of the Mi in a compatible way might seem
to be an ad-hoc requirement. However, this property arises naturally, when a generalized
Heegaard splitting is constructed from a sequence of handle attachments. It also ensures
that a generalized Heegaard splitting can always be amalgamated into a classical one. This
feature lies at the heart of many applications, including the main result of [3] according to
which the problem of computing the Heegaard genus is NP-hard. We also make great use of
the amalgamation procedure in Section 4 to establish Theorem 1.

2.5 Hyperbolic 3-manifolds
Hyperbolic geometry has been playing a role in the study of 3-manifolds for over a century
[39], but it rose into particular prominence after Thurston formulated the geometrization
conjecture [58], famously resolved by Perelman twenty years later [42, 43] (cf. [44]). Hyperbolic
3-manifolds constitute the richest family among geometric 3-manifolds, and, to this date,
they remain the least understood. We refer to [38] for an introduction to this area.

A 3-manifoldM is hyperbolic if its interior can be obtained as a quotient of the hyperbolic
3-space H3 by a discrete group of isometries acting freely on H3. Equivalently, if the interior
ofM admits a complete Riemannian metric of constant sectional curvature −1. Throughout
this section, M is assumed to be an orientable Riemannian 3-manifold. After fixing an
orientation onM, its metric tensor induces a “volume form” ω. This in turn leads to the
notion of volume defined via the integral

vol(D) =
∫
D
ω

for any open set D ⊆M. Also, any submanifold ofM admits a Riemannian metric induced
by the metric tensor ofM. Thus we may measure lengths of paths and areas of surfaces in
M as well. We refer to [38, Section 1.2] for details.

IfM is compact, then vol(M) is finite. The next striking result has been of paramount
importance in geometric topology, as it says that “geometric properties” of finite-volume
hyperbolic 3-manifolds are actually topological invariants.

I Theorem 6 (Mostow Rigidity Theorem [41], cf. [2, Theorem 1.7.1], [38, Chapter 13]). LetM
and N be finite-volume hyperbolic 3-manifolds. Every isomorphism π1(M)→ π1(N ) between
the fundamental groups ofM and N is induced by a unique isometryM→N .

13Note that there might be multiple arcs between the nodes u and v in Γ(D). We account for all.
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I Corollary 7. If two hyperbolic 3-manifolds have different volume, then they cannot be
homotopy equivalent, hence they cannot be homeomorphic.

Thick-thin decompositions. As mentioned in the Introduction, a key ingredient in the
proof of Theorem 1 is the the thick-thin decomposition theorem, a fundamentally important
structural result for hyperbolic manifolds of any dimension. In order to formulate it, we need
to introduce the injectivity radius of a Riemannian manifold.

I Definition 8 (injectivity radius). Let M be a Riemannian manifold and x ∈ M. The
injectivity radius of M at x, denoted injx(M), is the supremal value r > 0 such that the
metric ball of radius r around x is embedded inM. The injectivity radius ofM is defined
as the infimal value of injx(M), i.e., inj(M) = inf{injx(M) : x ∈M}.

After fixing some threshold ε > 0, a Riemannian manifoldM naturally decomposes into
an ε-thick and an ε-thin part based on the injectivity radius of its points:

M[ε,∞) = {x ∈M : injx(M) ≥ ε/2} and M(0,ε] = {x ∈M : injx(M) ≤ ε/2}. (7)

We are now in the position to state the thick-thin decomposition theorem, according to
which, for a sufficiently small constant ε > 0 only depending on the dimension d, the ε-thin
part of any orientable hyperbolic d-manifold has a well-understood structure.14

I Theorem 9 (Thick-Thin Decomposition; cf. [38, Chapter 4], [45, Section 5.3]). There exists
a universal constant εd > 0, depending only on the dimension d, such that for any ε ∈ (0, εd],
the ε-thin part of any orientable hyperbolic d-manifold M consists of tubes around short
geodesics diffeomorphic to S1 × Dd−1, or cusps.15

M[ε,∞)

M(0,ε]

cusp tube

Figure 8 Thick-thin decomposition of a non-compact hyperbolic surface.

I Remark 10. We conclude with some remarks about the thick-thin decomposition.
1. In case of compact 3-manifolds, there are no cusps in the thick-thin decomposition, but

only tubes. In dimension three, they are homeomorphic to solid tori. This is important,
as Theorem 12 is concerned with closed (hence compact) 3-manifolds.

2. The supremum of all εd for which the conclusion of Theorem 9 holds is called the d-
dimensional Margulis constant. As of now, the precise value of εd remains unknown. For
d = 3, it is known that 0.104 ≤ ε3 ≤ 0.616, cf. [45, p. 94].

3. Theorem 9 follows from a more general result about discrete subgroups of Lie groups,
called the Margulis Lemma [30], cf. [38, Section 4.2] and [45, Theorem 5.22].

14The manifolds in consideration are also required to be complete (as metric spaces). However, the way
we define hyperbolic d-manifolds (i.e., quotients of Hd under discrete groups of isometries acting freely)
automatically ensures their completeness.

15A d-dimensional cusp is a d-manifold with boundary that is diffeomorphic to N × [0,∞), where N is a
(d− 1)-dimensional flat, i.e., Euclidean, manifold. See [38, Section 4.1] for a precise definition.
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1:10 On the Pathwidth of Hyperbolic 3-Manifolds

3 Combinatorial width parameters for 3-manifolds

Two important topological invariants we have already discussed are the Heegaard genus
and the volume. Here we introduce a simple scheme that can be used to turn any non-
negative graph parameter into a topological invariant for compact 3-manifolds: Given a
graph parameter p : G→ N, defined on the set G of finite (multi)graphs, simply put

p(M) = min{p(Γ(T )) : T is a triangulation ofM}. (8)

We call any 3-manifold invariant p obtained this way a combinatorial width parameter. For
reasons explained in the Introduction, in what follows, we apply this scheme on two notable
graph parameters that have been playing a central role in the development of parameterized
algorithms [17, 20, 21] and in structural graph theory [5, 7, 31, 34].

Treewidth and pathwidth of a graph. Introduced by Robertson and Seymour [47, 48],
the treewidth and pathwidth informally measure how tree-like or path-like a graph is. To
precisely define them, we first need to talk about a tree decomposition of a graph G = (V,E):
it is a pair T = ({Bi : i ∈ I}, T = (I, F )) with bags Bi ⊆ V and a tree T = (I, F ), such that
1.
⋃
i∈I Bi = V ,

2. for every arc {u, v} ∈ E, there exists i ∈ I with {u, v} ⊆ Bi, and
3. for every node v ∈ V , Tv = {i ∈ I : v ∈ Bi} spans a connected subtree of T .
See Figure 9 for an illustration. The width of a tree decomposition equals maxi∈I |Bi| − 1
and the treewidth tw(G) is the smallest width of any tree decomposition of G, cf. Figure 10.

A path decomposition of a graph G is merely a tree decomposition for which the tree T is
required to be a path. Similarly, the pathwidth pw(G) of a graph G is the minimum width of
any path decomposition of G. From the definitions, tw(G) ≤ pw(G).

a b

c

f

e

g

d

G

a, c, b

T

c, d, f

b, c, d

d, e, g

a b

c

f

e

g

d

G

a, c, b

T

c, d, f

b, c, d

d, e, g

a b

c

f

e

g

d

G

a, c, b

T

c, d, f

b, c, d

d, e, g

(i) (ii) (iii)

Figure 9 (i) A graph G and a tree decomposition thereof, modeled on a tree T , of width 2. This
tree decomposition also happens to be a path decomposition as T is a path. (ii) Illustration of
properties 1 and 2 from the definition of a tree decomposition: The union of all bags equals V ,
and for every arc in E there is a bag containing that arc. (iii) Illustration of property 3: The bags
containing a given node (in this case c) span a connected subtree of T .
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(i) tw(tree) = 1 (ii) tw(G) = 2 (iii) tw(k × k-grid) = k (iv) tw(Kn) = n − 1

G

Figure 10 (i) Graphs of treewidth one are precisely the trees (possibly with loops or multiarcs).
(ii) A graph of treewidth two. (iii) The k × k-grid (above k = 5) has treewidth and pathwidth
equal to k, thus planar graphs can have arbitrary large treewidth. (iv) The complete graph Kn has
treewidth n− 1.

Treewidth and pathwidth of a 3-manifold. Having defined the treewidth and the pathwidth
of a graph, based on (8) it is immediate to extend these notions to 3-manifolds as

tw(M) = min{tw(Γ(T )) : T is a triangulation ofM}, and
pw(M) = min{pw(Γ(T )) : T is a triangulation ofM}. (9)

As tw(G) ≤ pw(G) for any graph G, we also have tw(M) ≤ pw(M) for any 3-manifoldM.
Recently, the quantitative relationship between these (and related) parameters and other

topological invariants has become the subject of intense research. In [26, Theorem 4] it was
shown that, for any closed, irreducible, non-Haken 3-manifoldM, the treewidth tw(M) is
bounded below in terms of the Heegaard genus g (M) by means of the following inequality:

g (M) ≤ 18(tw(M) + 1). (10)

The proof of (10) relies on the theory of generalized Heegaard splittings (see [26, Section 6]
for details) and, in combination with work of Agol [1], implies the existence of 3-manifolds
with arbitrary large treewidth.16 In subsequent work [25] it was proven (based on the theory
of layered triangulations [29]) that a reverse inequality holds for all closed 3-manifolds.

I Theorem 11. For every closed 3-manifoldM with treewidth tw(M), pathwidth pw(M),
and Heegaard genus g (M) we have

tw(M) ≤ pw(M) ≤ 4g (M)− 2. (11)

Here the first inequality follows from the definitions of pathwidth and treewidth (see above);
for details about the second one, we refer to [24, Theorems 1.6 and 2.4] and [24, Chapter 5],
where further refinements of these results are discussed along with related work by others.

4 The proof of Theorem 1

In this section we put together the ingredients discussed before, in order to prove that the
volume of a closed hyperbolic 3-manifold provides a linear upper bound on its pathwidth.

The proof of Theorem 1 rests on Theorem 12, a folklore result according to which the
Heegaard genus of a closed, orientable, hyperbolic 3-manifold can be upper-bounded in terms
of its volume (see, e.g., [56, p. 336–337] or [46]).

16A similar result was obtained in [18]. Here the treewidth of a knot diagram was related to the sphere
number of the underlying knot, giving the first examples of knots where any diagram has high treewidth.
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1:12 On the Pathwidth of Hyperbolic 3-Manifolds

I Theorem 12. There exists a universal constant C ′′ > 0 such that, for any closed, orientable,
hyperbolic 3-manifoldM with Heegaard genus g (M) and volume vol(M), we have

g (M) ≤ C ′′ · vol(M). (12)

Proof of Theorem 1 assuming Theorem 12. By combining (12) with the second inequality
in (11) the statement of Theorem 1 is readily deduced. J

We are left with proving Theorem 12. As we were unable to locate a proof of this result
in the literature, below we give a proof ourselves.

Proof of Theorem 12. First, we describe the general strategy. Given a closed, orientable,
hyperbolic 3-manifoldM, we start by taking a thick-thin decomposition ofM. By a theorem
that goes back to Jørgensen–Thurston, the thick part can always be triangulated using
O(vol(M)) tetrahedra. Next, we show that such a triangulation of the thick part lends itself
to a generalized Heegaard splitting ofM, where the sum of genera of the Heegaard surfaces
is O(vol(M)). In the final step, we amalgamate this generalized Heegaard splitting into a
classical Heegaard splitting ofM, and show that its genus is O(vol(M)).

We now elaborate on the details. First, we invoke the aforementioned theorem by
Jørgensen–Thurston, carefully proved by Kobayashi–Rieck. To precisely state this result, let
us define the (closed) δ-neighborhood Nδ (X ) of a subset X of a Riemannian 3-manifoldM
to be the set of those points inM that have distance at most δ from some point in X .

I Theorem 13 (Jørgensen–Thurston [60, §5.11], Kobayashi–Rieck [33]). Let ε ∈ (0, ε3], where
ε3 is the Margulis constant in dimension three (cf. Remark 10/2).
1. For any δ > 0, there exists a constant K > 0, depending on ε and δ, so that for any

finite-volume hyperbolic 3-manifoldM, the δ-neighborhood Nδ
(
M[ε,∞)

)
⊂M of the thick

partM[ε,∞) admits a triangulation with at most K · vol(M) tetrahedra.
2. Moreover, Nδ

(
M[ε,∞)

)
is obtained from M by removing open tubular neighborhoods

around short geodesics, and truncating cusps [33, Proposition 1.2].

Now we fix an ε ∈ (0, ε3] and some δ > 0. LetM be a closed hyperbolic 3-manifold. In
the work of Maria–Purcell [36], Theorem 13 plays a crucial role in ensuring the treewidth of
Nδ
(
M[ε,∞)

)
to be upper-bounded by a linear function of vol(M), and that ∂Nδ

(
M[ε,∞)

)
can be filled with solid tori. For proving Theorem 12, we utilize Theorem 13 differently:

I Proposition 14. Let Y = Nδ
(
M[ε,∞)

)
as defined above. The following are true.

1. For the Heegaard genus of Y we have g (Y) = O(vol(M)).
2. Y has O(vol(M)) boundary components, each of which are tori.

Proof of Proposition 14. To establish 1, consider a triangulation T of Y with O(vol(M))
tetrahedra. Such a triangulation is guaranteed to exist by Theorem 13/1. Fix an arbitrary
partition P = {∂1Y, ∂2Y} of the boundary components of Y (the trivial partition, i.e.,
∂1Y = ∅, ∂2Y = ∂Y, is also allowed). Follow a procedure similar to [52, Theorem 2.1.11]
to obtain a Heegaard splitting of Y compatible with P. (For more details, see Example 17
in Appendix B.) By construction, the genus of this splitting is O(vol(M)), hence, for the
Heegaard genus of Y, we have g (Y) = O(vol(M)).

For the first part of 2, observe that, by passing to a first barycentric subdivision, we may
assume a tetrahedron contributes triangles to at most one boundary component. The second
part of 2 follows from Theorem 13/2. C
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As discussed in Section 2.4 (cf. Remark 3), any decomposition M =
⋃
i∈IMi of a

3-manifoldM into codimension zero submanifolds, that intersect along closed surfaces and
have pairwise disjoint interiors, gives rise to generalized Heegaard splittings ofM. Because
M is hyperbolic, this is also true for every thick-thin decomposition ofM. So let us proceed
by taking a thick-thin decomposition

D = {Mi : i ∈ [m],
⋃m
i=1Mi =M} (13)

ofM, whereM1 = Y = Nδ
(
M[ε,∞)

)
is the thick part andM2 . . . ,Mm are the thin ones.

Note that, by Theorem 13/2, each Mi (2 ≤ i ≤ m) is homeomorphic to a solid torus
S1 × D2, and m = O(vol(M)) by Proposition 14/2. Let us label the nodes of Γ(D) via
the identity map. For each i ∈ [m], we choose a Heegaard splitting Mi = Ni ∪Si

Ki of
minimal genus compatible with this labeling. This gives a generalized Heegaard splitting
M =

⋃
i∈I(Ni ∪Si

Ki) of the hyperbolic 3-manifoldM. See Figure 11 for an illustration.

(i) D (iii) F(ii) Γ(D)

M2

M3

M4M5

M6

S1
S4

S3

S2
S6

S5

R5

N1

K1

K5

N5

M1 = Y
1

2

3

45

6

Figure 11 (i) Schematic example of a thick-thin decomposition D of a hyperbolic 3-manifoldM.
(ii) The dual graph Γ(D) of D with its nodes labeled via the identity map. (iii) The fork complex F

of a generalized Heegaard splitting associated with D and the given labeling of V (Γ(D))

B Claim 15. From the construction it directly follows that the generalized Heegaard splitting
M =

⋃
i∈I(Ni ∪Si

Ki) described above has the following properties:
1. All the Ni are handlebodies. For N1 we have g(∂N1) = g(S1) = O(vol(M)).
2. If 2 ≤ i ≤ m, then Ni is a solid torus, therefore g(∂Ni) = g(Si) = 1.
3. K1 is a compression body with ∂+K1 = S1 and ∂−K1 = “disjoint union of m tori.”
4. If 2 ≤ i ≤ m, then Ki is a trivial compression body homeomorphic to T2 × [0, 1]. For its

boundary components we have ∂+Ki = Si and ∂−Ki = Ri =Mi ∩M1.
5. For the sum of the genera of the surfaces Si we have

∑m
i=1 g(Si) = O(vol(M)). C

By Theorem 4, we may amalgamate this to a classical Heegaard splittingM = N ∪S K.
Finally, by combining the data from Claim 15 with the formula (6) in Theorem 4, we get.

g(S) =
∑
i∈I

g(Si)−
∑
e∈E

g(Re) + 1− χ(Γ(D)) (14)

= g(S1) +
m∑
i=2

(g(Si)− g(Ri)) + 1− χ(Γ(D)) (15)

= O(vol(M)) +
m∑
i=2

(1− 1) + 1− 1 = O(vol(M)). (16)

This concludes the proof of Theorem 12. �
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5 Discussion

Pathwidth vs. treewidth vs. volume. The inequalities (1) and (2) respectively provide
information about the quantitative relationship between the treewidth and the volume, and
the pathwidth and the volume of hyperbolic 3-manifolds. It is natural to study the sharpness
of these inequalities both in absolute terms and also relative to each other.

In [36, Section 6] Maria and Purcell show that, by performing appropriate Dehn fillings
on hyperbolic 2-bridge knot exteriors, one can obtain an infinite family of closed hyperbolic
3-manifolds with bounded treewidth, but unbounded volume. The bound on the treewidth
is established through a construction of small-treewidth triangulations of these manifolds,
based on the work of Sakuma–Weeks [49] on triangulating 2-bridge knot exteriors. It is not
difficult to see that these triangulations have bounded pathwidth, too.

Regarding the comparison of (1) and (2), recall that, from the definitions of pathwidth
and treewidth (Section 3) if follows that tw(M) ≤ pw(M) for every 3-manifoldM. However,
while there are examples for which both of these quantities are small [25] or arbitrary large
[26], we do not know whether their difference can be arbitrary large. Thus we ask:

I Question 16. Can the difference pw(M)− tw(M) be arbitrary large?

Note that, in case of graphs, trees can have arbitrary large pathwidth, e.g., the complete
binary tree Th of height h satisfies pw(Th) = dh/2e, cf. [6, Theorem 67] or [57, Lemma 2.8].

Algorithmic aspects of small pathwidth. In the Introduction it was mentioned that input
triangulations with small-pathwidth dual graphs can speed up algorithms that are fixed-
parameter tractable (FPT) in the treewidth. Here we briefly elaborate on this.

A typical FPT-algorithm A exploits the small treewidth of the dual graph of its input
triangulation by using a data structure called a nice tree decomposition. This is a particular
kind of tree decomposition, whose bags can be grouped into three different types: forget,
introduce, and join bags. A triangulation T with n tetrahedra and tw(Γ(T )) = k always
admits a nice tree decomposition with at most 4n bags of width k, see [32, Section 13.1].

Upon taking such a triangulation T as input, the algorithm A would first construct a tree
decomposition T of Γ(T ) of small width, turn T into a nice tree decomposition Tnice (which
is still of small width, as noted above), then parse Tnice and perform its specific computation
at each bag thereof. Depending on the problem to be solved, processing a join bag can
be orders of magnitudes slower than processing an introduce or forget bag (we refer to [26,
Appendix C] for more details, and to [13, Section 4(d)] for a real-life example).

Now, if the decomposition T happens to be a path decomposition (i.e., a tree decomposition
where the underlying tree is a path), then the procedure for constructing Tnice results in
a nice tree decomposition without join bags. Therefore, if the pathwidth pw(Γ(T )) is not
“much” larger than the treewidth tw(Γ(T )), constructing a path decomposition (instead of
an arbitrary tree decomposition) in the first step can potentially be very beneficial for the
overall running time of A, as the algorithm does not have to deal with join bags at all.

Topological parameters for FPT-algorithms. Algorithms that are FPT in the treewidth
have been very successful in 3-dimensional topology. They all come with a caveat though:
their fast execution presumes an input triangulation whose dual graph has small treewidth.
However, in case the triangulation at hand has high treewidth, finding another triangulation
of the same 3-manifold that has smaller treewidth might be very difficult.
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To address this challenge, recently there has been a growing interest in researching
algorithms that are FPT in topological parameters (e.g., the first Betti number [37]), that do
not depend on the particular input triangulation, but only on the underlying 3-manifold.

Together with [36], our work reinforces the potential of the volume of becoming a useful
topological parameter for FPT-algorithms in the realm of hyperbolic 3-manifolds.
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A The primal and dual construction of compression bodies
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Figure 12 The primal and dual ways of constructing a compression body C, cf. Section 2.2.
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B Heegaard splittings of 3-manifolds with boundary

I Example 17 (Heegaard splittings from triangulations, II – based on [52, Theorem 2.1.11]).
Let T be a triangulation of M with partition ∂1M∪ ∂2M of its boundary components.
Suppose that no simplex in T is incident to more than one component of ∂M.17 Take the
first barycentric subdivision sd1(T ) of T . Recall that T (1) and Γ(T ) denote the 1-skeleton
and the dual graph of T . Their first barycentric subdivisons T (1)

sd and Γ(T )sd are both
naturally contained in sd1(T ). Consider the subcomplex N(∂2M) ⊂ sd1(T ) consisting of all
simplices incident to ∂2M. We define two further subcomplexes of sd1(T ), namely

Γ1 = ∂1M∪ {vertices and edges of T (1)
sd not incident to ∂2M}, and

Γ2 = N(∂2M) ∪ Γ(T )sd.

Now pass to the second barycentric subdivision sd2(T ) and let (Γi)sd denote the image of
Γi under this operation (i = 1, 2). Let η(Γi) be the “thickening” of Γi, i.e., the subcomplex
of sd2(T ) formed by all simplices incident to (Γi)sd. One can readily verify that η(Γ1) and
η(Γ2) are compression bodies whose union isM, their upper boundaries satisfy ∂+η(Γ1) =
∂+η(Γ2) = η(Γ1)∩η(Γ2), and for their lower boundaries ∂−η(Γ1) = ∂1M and ∂−η(Γ2) = ∂2M.
Hence η(Γ1) and η(Γ2) form a Heegaard splitting ofM compatible with the given partition
of its boundary components. See Figure 13 for an illustration via “quadrangulations.”

BAAB
(i)M = T2 × [0, 1] (ii) A quadrangulation Q ofM

with eight cubes
(iii) The first barycentric
subdivision sd1(Q) of Q

(iv) Γ1

Γ1 = ∂1M∪ {vertices & edges
of T (1)

sd avoiding N(∂2M)}

Γ2 = N(∂2M) ∪ Γ(T )sd

(v) Γ2

Figure 13 Building a Heegaard splitting of the thickened torus T2× [0, 1] from a quadrangulation.

17This can be achieved, e.g., by passing to the first barycentric subdivision of T if necessary.
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