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—— Abstract

In their seminal work on Multidimensional Sorting, Goodman and Pollack introduced the so-called

order type, which for each ordered triple of a point set in the plane gives its orientation, clockwise
or counterclockwise. This information is sufficient to solve many problems from discrete geometry
where properties of point sets do not depend on the exact coordinates of the points but only on
their relative positions. Goodman and Pollack showed that an efficient way to store an order type in
a matrix A of quadratic size (w.r.t. the number of points) is to count for every oriented line spanned
by two points of the set how many of the remaining points lie to the left of this line.

We generalize the concept of order types to bicolored point sets (every point has one of two
colors). The bicolored order type contains the orientation of each bicolored triple of points, while
no information is stored for monochromatic triples. Similar to the uncolored case, we store the
number of blue points that are to the left of an oriented line spanned by two red points or by one
red and one blue point in Ag. Analogously the number of red points is stored in Ar. As a main
result, we show that the equivalence of the information contained in the orientation of all bicolored
point triples and the two matrices Ap and Agr also holds in the colored case. This is remarkable,
as in general the bicolored order type does not even contain sufficient information to determine all
extreme points (points on the boundary of the convex hull of the point set).

We then show that the information of a bicolored order type is sufficient to determine whether
the two color classes can be linearly separated and how one color class can be sorted around a point
of the other color class. Moreover, knowing the bicolored order type of a point set suffices to find
bicolored plane perfect matchings or to compute the number of crossings of the complete bipartite
graph drawn on a bicolored point set in quadratic time.
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1 Introduction

Many problems from discrete geometry are based on properties of point sets in the plane
that do not depend on the exact coordinates of the points but only on their relative positions.
In their seminal work on Multidimensional Sorting [6], Goodman and Pollack introduced
the so-called order type, which for each ordered triple of a point set in the plane gives its
orientation, clockwise, counterclockwise, or collinear. From a more global view, order types
must fulfill some axioms that define abstract order types—see Knuth [9] for details on these
axioms, where order types are called CC-systems. These axioms form one of the several
axiom systems that define uniform acyclic rank-3 oriented matroids [3]. They all have their
own applications and motivational aspects, and provide additional insight. Many of them
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can be generalized to higher ranks, while others are particulary natural in rank 3, like e.g.
hyperlink sequences; see [4] and discussions therein for a short summary. However, motivated
by the applications mentioned in the next paragraph, in this work we are mainly interested
in order types which are realized as a set of points in the plane. For such a set S of points
its order type can be stored in a matrix A, which is of cubic size with respect to the number
of points of S. For every triple p,q, s € S we encode its orientation by A(p,q,s) € {—1,0,1}
where “—1” means clockwise, “0” means collinear, and “+1” means counterclockwise.! An
alternative way to code the order type is to use a matrix A of quadratic size. For two points
p,q € S the entry A(p, ¢) counts the number of points from S\ {p, ¢} to the left of the oriented
line through p and ¢. Goodman and Pollack [6] showed that the information contained in A is
the same as in A, and that the two matrices can be converted into each other in polynomial
time.

Colored point sets have a long history in discrete and computational geometry—see
the recent survey of Kano and Urrutia [7] for a nice collection of problems in this area.
Consequently, we extend the concept of order types to bicolored order types. Let P be a set
of at least 3 points in the plane in general position, that is, no three points lie on a common
line. Using the symbol U for the disjoint union let P = B U R be partitioned into two disjoint
sets B and R, |B| = m and |R| = n, where the points by, ..., b, € B are colored blue, and
the points rq,...,r, € R are colored red. An oriented line through two points p,q € P,
directed from p to g, will be denoted by £,,. For three points p, g, s € P the triple orientation
A(p, q,s) (clockwise or counterclockwise) is determined by considering the oriented line £,
and checking in which of the open half-planes defined by £, (right or left) the point s lies.
We denote the collection of the orientation of all bicolored point triples of P (triples that
contain at least one blue and one red point) by A(P) or simply by A if it is clear from the
context which point set is considered. Labelled point sets where all triple orientations are
the same belong to the same equivalence class, called the bicolored order type of P.

» Definition 1. Let P be the set of all bicolored labelled point sets in general position in the
plane consisting of m blue and n red points. The bicolored order type of size (m,n) is the
equivalence class on P where two sets of P are equivalent if all bicolored triple orientations
are the same.

The orientation of monochromatic point triples is not encoded in A. Similar to A for uncolored
order types we define Ag, Ag to count the number of blue, respectively red, points to the
left of an oriented line spanned by two points from P. More precisely, for any pair of red
points 73, 7; € R we count the number of blue points to the left of the oriented line ¢, ., in
Ag(ri,rj), and for any bicolored pair of points b; € B and r; € R we count the number of
blue points to the left of the oriented line £y, in Ap(b;, ;) and the number of blue points
to the left of the oriented line £, 3, in Ag(r;,b;). In the same way we count the number of
red points to the left of an oriented line spanned by two blue points or by one blue and one
red point in Ar. See Figure 1 for an example.

In Section 2 we show as a central result that the information contained in Ag and Ag is
equivalent to the information given by all bicolored triple orientations A. Moreover, given one
of the two representations of a bicolored order type, the other can be derived in polynomial
time. This result has to be seen in contrast to the fact that in general we cannot use the

! Note that Goodman and Pollack [6] define A(p, q) as the set of points on the left of £,,. However, both
definitions contain the equivalent information. For convenience, we directly use the triple orientation
A(p, g, s) of the point triple (p,q, s).
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Figure 1 Counting points to the left of a Figure 2 A point set where no point on the
line induced by the red point r; and the blue = boundary of the convex hull can be determined.
point b1: Ap(r1,b1) =0 and Ar(r1,b1) = 2. For Point 7 can be be replaced by ' without chang-
the two red points r2 and r3, Ag(rz2,r3) = 2, ing the bicolored order type.
while Ag(r2,73) is not defined.

bicolored order type to determine all extreme points of a bicolored point set, see Figure 3 for
an example. The reason is that the orientation of a monochromatic triple (the red point triple
r1,72,73 in Figure 3) is not encoded in the bicolored order type. Thus, ro can be extreme
or not, without changing the bicolored order type of the set. Moreover, we might not even
be able to determine any of the points on the boundary of the convex hull. An example is
given in Figure 2. The boundary of the convex hull is built solely by red points, and this
we can easily determine given the bicolored order type. However, the bicolored order type
does not reveal any necessary information to determine whether a fixed red point lies on the
boundary of the convex hull or not.

Using the equivalence between A and Ap, Ag we show that several tasks on bicolored
point sets can be solved in polynomial time by using only the information contained in the
bicolored order type. In Section 3 we show how to sort one color class around a point of
the other color class, and how to determine whether the two color classes can be linearly
separated.

In Section 4 we elaborate on how to determine crossings between bicolored edges. We
use this to find bicolored plane perfect matchings for a given bicolored order type. For given
A and Arp we show how to compute the number of crossings of the complete bipartite
graph drawn on the represented bicolored point set in quadratic time. Finally, in Section 5
we generate all bicolored order types of small cardinality and give their numbers up to
m +n < 10 and compare them to the number of uncolored order types.

2 Equivalence of (\5,A\g) and A

Given the orientation of all triples A, in the uncolored case it is straightforward to compute
the A-matrix. Goodman and Pollack [6] showed that the opposite direction also holds, namely
that the A-matrix uniquely determines A. Given the Ad-matrix, an extremal point is a point p
for which A(p,¢) = 0 holds for some point g € P\ {p}. To compute the triple orientations
from the A-matrix, we iteratively choose an extremal point p and remove it from the set
after computing all triple orientations involving p. This is essentially done by sorting all
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Figure 3 Two point sets with the same bicolored order type. We cannot determine whether 72 lies
on the boundary of the convex hull as the orientation of the red point triple (r1,72,73) is unknown.

remaining points radial around the extremal point, using the information of A to compare
the order of two elements. Thus, this process is also called two-dimensional sorting, and
more general multidimensional sorting in higher dimensions [6].

We show that a similar equivalence holds for bicolored order types. Again, given all
bicolored triple orientations A, computing Ag and Ag is straightforward. So in the following,
we will argue the inverse direction, which requires some more involved steps.

For bicolored point sets, a bicolored edge {b,r} lies on the boundary of the convex hull if
and only if either (1) Ag(b,r) = Ar(b,7) =0 or (2) Ag(b,r) =m —1 and Ag(b,r) =n —1
holds. Then b and r are extreme points and can be found by testing all mn bicolored edges.

For monochromatic edges we can in general not determine whether they lie on the
boundary of the convex hull, see Figure 3 for an example. The reason is that in Ap and A\g
it is not encoded if points of the same color as the monochromatic edge lie on both sides of
it. This also implies that we cannot always determine all extreme points.

However, if no bicolored edge on the boundary of the convex hull exists, we know that
the boundary of the convex hull consists solely of points of one color. We thus can find a
point of this color which is extremal to the set of the other color, that is, which lies outside
of the convex hull of the points of the other color. We do this by inspecting all O(m? + n?)
monochromatic edges. For such an edge we check whether all points of the other color lie on
one side of it. For example, for a blue edge /4,5, this is the case if either Ar(b;,b;) = 0 or
Ar(bi,b;) = n. As obviously an extreme point (for example from a bicolored edge on the
boundary of the convex hull) is also extremal to the set of the other color, we obtain the
following observation.

» Observation 2. For a given bicolored point set P = B U R we can determine all points
that are extreme w.r.t. the other color by using A and Ag in O(m? +n?) steps.

As we have seen, it is not always possible to determine whether a point is an extreme
point using just Ap and Ag. We therefore extend the concept and make use of points that
are not “dominated” by other points. We call such points undominated.

» Definition 3. A red point r € R is undominated if it (1) lies outside of the convex hull
of B, and (2) the wedge formed by the tangents from r to the convex hull of B that is opposite
of B is empty of points of R. The symmetric definition holds for a blue point b € B.

» Lemma 4. Given the matrices A\g and Ag and an undominated point p € B U R, all
bicolored triple orientations involving p can be determined in constant time per triple.

Proof. Without loss of generality let » € R be an undominated red point. By definition, r
lies outside the convex hull of B and the wedge between the two tangents of r to the convex
hull of B that lies opposite of B is empty. We first compute the triple orientations of r and
any two blue points; see Figure 4 for an illustration of the proof. Recall that for every b € B
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Figure 4 For an undominated point r € R the wedge marked in gray is empty of other points.
All bicolored triple orientations involving r can be determined by using Ag. In the drawing
)\B(T‘, bj) < AB(T, Tk) < )\B(r, bz) holds.

the number of blue points to the left of £, is given by Ag(r,b). Thus, the rotational order of
blue points around r can be read from \g, which yields the desired triple orientations.

+1, if /\B(’I“7 bl) > /\B(T7 bj)

—1, otherwise.

A(’I‘, bi,bj) = A(bi,bj,T) = A(bj,?", bl) = {

This implies the inverse triple orientations A(b;, b;, ) = A(b;,7,b;) = A(r,b;,b;) = —A(r, bs, bj).

Next we consider the triple orientations involving r, another red point and one blue
point. For every red point 7, the number of blue points lying to the left of ¢,,, is given
by Ap(r, 7). If a blue point b lies on the right side of £,.., , then all blue points that lie to
the left of ¢,,, also lie to the left of ¢,4, as r is undominated. This is the case if and only if
Ap(r,ri) < Ap(r,b). Thus we get

+1, if Ap(r,ri) < Ap(r,b)

—1, otherwise.

A(Ta b, rk) - A(ba T‘k,T) = A(Tkara b) = {

Similar as before we have A(ry,b,r) = A(b,r, 1) = A(r, g, b) = —A(r, b, 7).
Observe that for every triple we only query two entries in Ag. As claimed we can thus
compute any triple orientation that involves r in constant time per triple. |

Next, we show that for a bicolored point set with a monochromatic, say red, convex hull
we can always find an undominated red point by using only the information given in Ag
and Ag. A red point r that is extremal with respect to B can easily be found via searching
for another red point 79 such that Ag(r,72) = 0. Note that in that case both r and ro are
extremal w.r.t. B, and that ro serves as a witness for . The proof of the following Lemma
describes how to additionally test whether r is undominated.

» Lemma 5. Let P = BUR be a bicolored point set and let p be a point that is extreme with
respect to the other color class. Then, in O(m) steps for p € R (respectively O(n) steps for
p € B) we can determine whether p is undominated.

Proof. Assume without loss of generality that r € R is extremal with respect to B. From Ap
we can easily find the blue points b* (Ag(r,b') = 0) and b™ (Ap(r,b™) = m — 1) of B that
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Figure 5 Test whether r is undominated. The tangents £,41, £,pm define the four wedges (A),
(B), (C) and (D).

define the left and the right tangent of r to the convex hull of B. If the wedge between these
tangents through r that lies opposite of B—the wedge (D) marked in gray in Figure 5—is
empty, then r is undominated. To check this, we first compute the number of red points in
wedge (A); see again Figure 5. For every red point r; we have Ag(r,r;) = 0 if and only if r;
lies in wedge (A). (Similarly, Ag(r,7) = m if and only if r; lies in wedge (C)). Counting
the corresponding entries in Ap yields the number of red points in (A) (and also in (C)).
Finally, Ag(r,b') gives the total number of red points in (A) and (D) together. Subtracting
the number of red points in (A) from Ag(r,b") yields the number of red points in the wedge
(D). If (D) is empty, then r is undominated by definition.

To find the two tangents through r and for counting the number of red points in (A)
we have to inspect m entries of g, all other steps need only constantly many values of Ap
and Ar. Thus O(m) steps are sufficient to determine whether r is undominated. <

» Theorem 6. For a point set P = B U R the information contained in A\p and Ag is
equivalent to the information given by all bicolored triple orientations A. Given one of the
two representations of a bicolored order type, the other can be computed in polynomial time.

Proof. Computing Ap and Ag from A can trivially be done in O(mn(m + n)) steps. So
assume we are given Ag and A\g and want to compute A. For any point set there always
exist undominated points, as every extreme point is obviously an undominated point. Thus,
by combining Observation 2 and Lemma 5 we can find an undominated point, say p, in time
O(m? 4+ n?). We do this by first computing all points that are extreme w.r.t. the other color
(O(m? + n?) time) and then checking all these points for being dominated (in O(mn) time).
The proof of Lemma 4 tells us how to compute all bicolored triple orientations involving p
in time O(m? + n?). After this, we can remove p from the set and update the A\-matrices
as follows. If w.l.o.g. we remove a red point p = ry, then, for every triple (rx,b;,b;), i < 7,
with A(rg,bi,b;) = 1, vy, lies to the left of £, so Ag(bi,b;) has to be decremented by 1
for each such triple. Similarly, if A(ry,b;,b;) = —1, ry lies to the right of £, and thus
Ar(b;,b;) is decremented by 1. For each triple consisting of 7, a blue point b and another
red point 7, r; # ri, we also need to update Ag. If A(rg,b, ) = 1, then the value of Ag(b, ;)
is decremented by 1. Vice versa, in case A(rg,b,r) = —1, Agr(r,b) gets decremented by 1.
Moreover, the row and the column at index k are removed from both Ag and Agr as r; is
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removed from the set. These updates can be done in total time O(m? + n?). We are left
with A-matrices of size (m +n — 1) X (m +n — 1). Doing this repeatedly O(m + n) times
shows that all bicolored triple orientations A can be computed from Ag and Ar. The total
number of steps needed is O(m?3 + n?). |

Given the equivalence of Theorem 6 it is natural to ask whether it suffices to use only
bicolored edges for constructing A, meaning that the entries of both Ag and Ag are considered
only at index pairs consisting of one red and one blue point. From Figure 15 we can see
that this is in fact not the case. It is easy to verify that the two configurations given in
Figure 15(a) and (b) have the same A-matrices when restricting them to bicolored edges,
namely

b1 bg bl b2
1 0 1 r1 1 2
)\B _ T2 1 0 and )\R _ 79 2 2
T3 1 0 T3 2 1
T4 1 0 Ta 1 1/.

Nevertheless, the triple orientations of (by,71,72), (b1,7r1,73) and (b1, 72, r3) are different.

3 Sorting and Separating

In the previous section we have shown that the information contained in the two A-matrices
on the one side and the A-matrix on the other side is equivalent. In this and the next section
we will use this fact and show several combinatorial properties of bicolored point sets that
can be derived from this information.

3.1 Sorting

In this section we show how to sort the set B of blue points clockwise around a given red
point r, using the information in Ag and A.

If r is extreme with respect to B, there exists a point b € B with Ag(r,b) = 0. The edge
¢,3 is the left tangent from r to B and we choose b as the first point b!(r) in our sorting.
The ordering of B around r can then be read from the matrix Ag. A blue point is the ‘P
point bé(r) in the sorted order around r if exactly i — 1 blue points lie to the left of Crpi(r)s
that is, if Ag(r,b*(r)) =i — 1. Thus we can sort B around r by sorting the entries Ag(, b,)
for all blue points by, € B with a standard sorting algorithm.

If r lies in the interior of the convex hull of B then there is no unique first blue point in
the order around r. Thus we first split the set B into two subsets, such that r is extreme
w.r.t. both sets. Then we separately sort the blue points in each set around r, and finally
combine the two sorted sets.

We start with an arbitrary blue pivot point b and split the rest of B into two sets: the
blue points that lie to the left of £, ;, and the blue points that lie to the right of this line. Let

BT ={be B\ {b} | A(r,b,b) =+1} and B~ ={be B\ {b}|A(r,b,b) = —1}.

The line £, ; defines the split between the first and the second part in the ordering around r,
where b will lie between them. Using A we compute Ag+ (r,b) for all b € Bt and analoguously
Ap-(r,b) for all b € B~. Similar to the first case where r was extreme with respect to B we
can sort the points in BT around r, and independently the points in B~ around r. Finally

CGT
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Figure 6 The order of B = {b1, b2, b3} around r does not follow in a direct way from Ap and Ag.

Figure 7 Left: /¢ linearly separates B and R. The dashed lines are the two bitangents of B and R.
Right: B and R are not linearly separable.

we combine both sorted sets together with b to the complete list of blue points sorted around r.

If r lies in the interior of conv(B) it is not obvious how to solely use the information
given by the entries of Ap and Ar to sort B around r. For an example see Figure 6. In this
configuration we want to sort B = {by, b2, b3} around r. The corresponding entries of Ap
are given by Ag(r,b1) = Ag(r,b2) = Ag(r,b3) = 1, but no direct conclusions can be drawn
about the sorting of B around r. The information of Ar also includes all red points that are
not relevant in that case. This shows that for some applications it might be simpler to use
the information of A, while for others using Ag and Ap might be easier. The equivalence
shown in Theorem 6 allows us to take the perspective which seems to be more suitable for a
problem at hand.

3.2 Linear Separation

Next, we show that the information encoded by Ag and Ag is sufficient to determine whether
the two color classes B and R are linearly separable. If two sets of points are linearly
separable then there exist two bitangents, c.f. Figure 7 (left). The bitangents can easily be
determined via the A-matrices: a line £y, is a bitangent if and only if either

Ag(b,r)=m—1 and Ar(b,r) =0 (1)
or

Ap(b,r) =0 and Ar(b,r)=n—1 (2)
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holds. Moreover, if there exists a line that satisfies Equation (1), then there also exists one
that satisfies Equation (2) and vice versa. If, on the other hand, no pair (b, r) fulfills the
conditions, then B and R are not linearly separable; see Figure 7 (right) for an example.
The corresponding A-matrices of this example are

bi by bz i 1 by by by 11

by 0 1 by 2 1 0 1

ba 1 1 by | O 2 0 1

AB = by 2 1 and Ap= b3 [ 1 0 1 0
m|2 1 0 1 r | 1 1 0
T2 1 1 1 2 T2 0 0 1

One can see that no tuple consisting of a blue and a red point satisfies condition (1) or (2).
Hence, no bitangent exists in this point set.

4 Matchings and Crossings

In this section we concentrate on bicolored edges, that is, edges spanned by one red and one
blue point. First we will show that using the bicolored order type allows us to construct a
plane perfect red-blue matching. Then we consider crossings of bicolored edges and consider
the crossing number of the complete bipartite graph K, ,.

4.1 Bicolored Matchings

For this section we assume that our point set consists of as many blue points as red ones,
that is, |B| = |R| = n.

» Definition 7. If for a red point r € R and a blue point b € B, Ag(r,b) = Ag(r,b) holds,
then we call £, a balanced line.

Note that since |B| = |R], also the number of blue points to the right of the balanced
line £, equals the number of red points to the right of it. A special variant of a balanced line
can be obtained from the 2-dimensional discrete version of the ham-sandwich cut. Here a
line simultaneously bisects both the red and the blue points. That is, on each side of the line,
there are at most half of the red and half of the blue points. Rotating a line around vertices
and using the intermediate value theorem it can be shown that there always exists such a
line that passes through one red and one blue point and that this line furthermore has the
same number of red points as blue points to its left. Thus, this variant of the ham-sandwich
cut provides a balanced line in our sense. In the following we consider a more general setting.
Pach and Pinchasi [12], and later Orden, Ramos and Salazar [11], proved that there always
exists a linear number of balanced lines.

» Theorem 8. [12] For every bicolored point set with |B| = |R| =n there exist at least n
balanced lines.

Using the concept of undominated points as introduced in Definition 3 we show that
actually every undominated point is incident to a balanced line. This reveals more details
about the configuration of bicolored point sets. However, the converse does not hold: there
exist balanced lines which are defined by two dominated points.
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Figure 8 An undominated point 7. The blue points b', ..., b" are sorted clockwise around it.

» Theorem 9. Let P be a bicolored point set with |B| = |R|. For every red point r € R
that is undominated, there exists a blue point b € B such that £, is a balanced line. The
analogous statements holds for undominated blue points.

Proof. Let B be sorted clockwise around = and label the blue points b',...,b™ in this order;
see Figure 8. Let A; = Ap(r,b") — Ag(r,b) be the difference between the number of blue
and the number of red points to the left of £,,:. To prove the theorem we will show that
there exists some ¢ with A; = 0.

If there is no red point to the left of £,41 then {r,b'} lies on the boundary of the convex
hull of P and therefore £,;: is a balanced line, and the theorem follows. The same holds if
there is no red point to the right of £,;m. So for the remainder of the proof we can assume
that there is at least one red point to the left of £,,1 and at least one red point to the right of
Lypm, thus Ay < 0 and A,, > 0. Note that these red points are disjoint, as r is undominated.

Next consider the sequence Ay, ..., A,,. Since A; < 0 and A,, > 0, the values of this
sequence have to increase at some point. A; 11 > A; can only be true if no red point lies in
the wedge b’,r,b"t!. Therefore the sequence increases by at most 1 in each step. Since it
starts with A; < 0 and ends with A,, > 0, it needs to pass A; =0 for somei € 1,...,m. <«

The existence of a bicolored balanced line can be used to construct a plane perfect
matching of bicolored edges by a divide-and-conquer algorithm. We successively find a
balanced line £,;, add it to the matching, and split the rest of the point set into two subsets,
where one contains all points to the left of £,;, and the other one contains all points to the
right of ¢,;. Since the subsets are linearly separated, no two edges of the matchings from
different iterations intersect, and thus we get a plane perfect matching. Finding a balanced
line can be done using the information from Ag and Ag, and splitting the remaining points
into two subsets can be done using A. Hence, we obtain the following result.

» Corollary 10. The information contained in the bicolored order type of a set P with
|B| = |R| is sufficient to find a plane perfect matching of bicolored edges of P.

Note that not every plane perfect matching with bicolored edges contains an edge that
defines a balanced line. See Figure 9 for a class of matchings, so-called lens shutters, that do
not contain any balanced line. In the next section we will see how to find crossings between
bicolored edges, which can then also be used to check whether a given set of bicolored edges
constitutes a plane perfect matching.
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A

Figure 9 The lens shutter: two examples of matchings where no edge induces a balanced line.

//évst

g

(a) ¢pq separates s from t, and  (b) Neither £ separates p and g,
{st separates p from q. nor {pq separates s and t. (c) £s¢ does not separate p and gq.

Figure 10 Three combinatorially different configurations of two edges.

4.2 Crossings

To minimize the number of crossings in drawings of the complete bipartite graph has been a

topic of intensive research in the last decades, see for example the survey by Schaefer [13].

In 1954, Zarankiewicz [16] conjectured the minimum number of crossings in any drawing of
Ko n to be

s 5] 252 31125

and he constructed a straight-line drawing of the complete biparite graph which induces that
many crossings. The conjecture has been verified for graphs of size (m,n) with m < 6 [§],
and for K77 and K7 g [15]. It is still open for K711, K99 and Kj; 11. In this chapter, we
present a formula to compute the number of crossings of a rectilinear drawing of K,, , on a
given bicolored point set, using the matrices Ag and Ag. Our approach is significantly faster
than simply testing all 4-tuples of points for a crossing.

Two edges {p,q} and {s,t} cross in their interior if and only if each of the lines ¢,,
and /4 separate the end points of the other edge, see Figure 10(a). Thus, to determine
whether {p, ¢} intersects {s, ¢} we can use the triple orientations of their end points p, g, s,
and t. More precisely, {p,q} intersects {s,t} if and only if (1) A(p,q,s) # A(p,q,t) and
(2) A(s,t,p) # A(s,t, q) holds. Thus, checking four triple orientations is sufficient to determine
crossings. In Figure 10(b) and (c) we depict configurations where one or both conditions do
not hold, and therefore no intersection exist.

The concept of determining crossings between segments via triple orientations also works
for colored points, as long as the needed triple orientations are defined. The case we are
mainly interested in are crossings between two bicolored edges (b1, 71) and (bs, r3). In that
case we have to check A(by,r1,b2) # A(b1,r1,72) and A(be, 72, b1) # A(ba, 2, 71). All required
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triples are bicolored, and thus crossings of bicolored edges are well defined by a bicolored
order type.

In contrast to the previous observation, it is in general not possible to detect an intersection
by using the bicolored order type if one edge is bicolored, and the other edge is monochromatic.
To see this, consider the two edges (by,b2) and (b3, r1) and observe that we would need to
check the triple orientation A(by, b, bs), which is not defined in the bicolored order type.
The same is true if we consider two monochromatic edges that have the same color. But for
a monochromatic red edge and a monochromatic blue edge all required triple orientations
are again bicolored, and thus crossings can be detected.

4.2.1 Rectilinear Crossing Number

In this section we consider the rectilinear crossing number ¢r(P) of the complete bipartite
graph on P = BU R. We will derive a formula for ¢¥(P) in a way similar to the formula
for the rectilinear crossing number of the complete graph presented by Lovasz, Vesztergombi,
Wagner, and Welzl [10] and also independently by Abrego and Ferndandez-Merchant [1]. Their
basic idea is to compute the number of labeled 4-tuples of points in a set S of n’ points and
to compare it with the number of 4-tuples in convex and concave position. They define a
j-edge as an ordered pair of points p, g such that exactly j points of the given point set lie
on one side of £, and the remaining (n’ — 2 — j) points on the other side. Let e; denote
the number of j-edges. Then, every j-edge can be extended to a labeled 4-tuple of points
D, 4, s,t by adding one point s from the left of £,4, and one point ¢ from the right. Counting
all such 4-tuples sums up to Z;l;)z ej j (' —2—j). In that way every 4-tuple of points in
convex position is counted 4 times (4 oriented edges separate the other two points), while
every 4-tuple of points in non-convex position is counted 6 times (6 oriented edges separate
the other two points). The total sum of 4-tuples is (’Z). Together with the fact that the
number of crossings equals the number of convex 4-tuples this leads to the following formula
for the rectilinear crossing number.

n'—2
_ n' 1 . .
cr<s>=3(4) —5 i =2 )
=0

For more details about this relation see [1, 10].

In a similar way we next derive a formula for the rectilinear crossing number ¢r(P) of the
complete bipartite graph on a point set P = B U R. We do this by again counting 4-tuples of
points, namely those consisting of two blue and two red points. More precisely, we count the
edges that separate the other two points of a 4-tuple, and distinguish the types of separation
according to the coloring. Given a 4-tuple, we call an edge a separating edge if the line
going through the two endpoints of the edge separates the other two points of the 4-tuple. A
separating edge can either be monochromatic, meaning it is defined by the two points of the
same color and splits the two points of the other color, or it can be bicolored and splitting
two points of different colors. We count both types of separating edges in each 4-tuple of
two blue and two red points. The results are listed in Table 1.

Let ¢\ be the number of monochromatic separating edges and cg the number of bicolored
separating edges, summing over all 4-tuples of P. Furthermore, denote the number of 4-tuples
in the configuration seen in Figure 11 by T4, the number of 4-tuples in the configuration
seen in Figure 12 by Ty, and the number of 4-tuples in the configuration seen in Figure 13
and 14 by Tc. Then, Ty + Tc = ep and T + 27¢ = cg. Counting all 4-tuples gives
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convex position non-convex position
[ ] [ ) [ [ ] ° °
° L]

[ ] [ ) [ ] [ ) [ ] [ ] [ ) [ )
separating edges Figure 11 T Figure 12 T Figure 13 T¢ Figure 14 T¢
monochromatic 0 2 1 1

bicolored 2 0 2 2

Table 1 The number of separating edges broken down to order type and colors. Figure 11: All
points lie in convex position, the color classes are linearly separable. Figure 12: All points lie in
convex position and are colored alternately. Figure 13, 14: The points are in non-convex position,
all possible colorings are equivalent.

Ta+Ts + Tc = (3)(5). Since the configuration depicted in Figure 11 is the only one that
admits a crossing, the number Tz of these 4-tuples gives the rectilinear crossing number.
Therefore, we solve the system of linear equations to get T and obtain

T(P) =Ty =2 (’;) (Z) — v — %B (3)

So as soon as we know cg and ¢y, we can compute the rectilinear crossing number of P.
Using Ap and Ag at the indices corresponding to points of the same color we sum over all
monochromatic separating edges and get

e = Ar(biby) Ar(bs, bi) + > Ap(re, i) Ap(re, 7e).
5

We count the bicolored separating edges in all 4-tuples in a similar manner:

cg = Y Ap(bi, k) Ar(rk, bi) + Ar(bi, 7) Ap(rk, bi).

biyTk

To compute ¢y and cg, all (3) + (5

mn bicolored point tuples, are considered separately. Therefore, given Ag and Ag, the
two constants can be computed in © (m2 —|—n2) time. This is significantly faster than
the brute-force approach of testing all pairs of bicolored edges for crossings, which takes
©((%3)(5)) = © (m?n?) time. Inserting ey and cp into Equation (3) gives the (rectilinear)
crossing number of the complete bipartite graph on P.

) monochromatic point tuples, respectively all

» Theorem 11. Given a bicolored point set P = BU R and A\ and \g, the rectilinear
crossing number of the bipartite straight-line graph drawn on P is given by

(P) =2 (’;) (Z) —en— %B (4)

and can be computed in © (m2 + n2) time.

Let us elaborate this with two examples given as the two bicolored order types in Figure 15.

For each of them, we count the separating edges of all types. The point set in Figure 15(a)
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L] L] L] L]
2
})1 ° ° bz ])] : ° b)
o °
(& 8
(a) 4 monochromatic separating edges (b) 5 monochromatic separating edges
(1 red, 3 blue), 10 bicolored separating (2 red, 3 blue), 10 bicolored separating
edges edges

Figure 15 Examples for computing the rectilinear crossing number by using separating edges.

has 4 monochromatic separating edges (1 red, 3 blue) and 10 bicolored separating edges.
Using Equation (4), its rectilinear crossing number is computed as follows:

m(P):2(§><;>—4—120:2~1-6—4—5:3.

For the bicolored order type in Figure 15(b) we count 5 monochromatic separating edges
(2 red, 3 blue) and 10 bicolored separating edges, and get

2\ (/4 10
(:1“(P):2(2>(2)—5—2:2~1-6—5—5:2.

5 All Bicolored Order Types of Small Cardinality

To obtain all bicolored order types of small cardinality we use a straight-forward approach.
We take all uncolored order types on |S| = m + n points as provided by [2] and color m
vertices blue and n vertices red in all possible ways. This results in many duplicates—because
of symmetries and because the same bicolored order type might be obtained from different
uncolored order types—which we filter out. The resulting numbers of bicolored order types
for up to m—+mn = 10 points are listed in Table 2. Note that here we consider unlabelled point
sets. Thus, two sets belong to the same order type if there are labellings of the sets such that
all triple orientations are the same, or all triple orientations are inverse. Point sets where all
(bicolored) triple orientations are inverse have the same combinatorial characteristics, for
example the convex hull and the intersection of edges. Since we want to generate as few sets
as possible, we do not distinguish between such sets.

On the one hand we do not consider several of the triple orientations of an (uncolored)
order type as these points belong to the same color class. Thus, previously different order
types might belong to the same equivalence class for colored order types. On the other hand,
adding color to the points might generate different colored order types out of one (uncolored)
order type. Therefore, it is ad hoc not clear whether for some fixed cardinality and for a
given relation m : n of blue and red points there are more colored or uncolored order types.
The results in the table suggest that only for a very unbalanced color distribution there
are less colored order types. The number of colored order types with only one red point
is equivalent to the number of self-dual 2-colored necklaces with 2(m + n) beads [5] and
also to the number of combinatorial types of simplicial neighborly polytopes in dimension
2(m 4+ n) — 3 with 2(m + n) vertices, see Sequence A007147 of The On-Line Encyclopedia of
Integer Sequences [14]. Already for 2 red points in a bicolored order type we are not aware of
a way to determine their number for some fixed cardinality m + 2 without enumerating them.
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|S| | m | n | # bicolored order types | # order types
4 2 2 3
3 1 2
¥:5 2
5 3 2 12
4 1 2
> 14 3
3 3 72
6 4 2 68
5 1 4
144 16
4 3 2 108
7 5 2 422
6 1 5
3 2535 135
4 | 4 46 715
3 5 3 44 397
6 2 3 495
7 1 9
3 94 616 3 315
5 1 4 5 088 553
9 6 3 1 148 398
7|2 33 193
8 1 12
3 6 270 156 158 817
5 5 343 385 532
6 | 4 342 917 794
10 7|3 35 582 251
8 2 362 625
9 1 23
3. 722 248 225 14 309 547

Table 2 Number of bicolored order types of size (m,n), m > n, m +n < 10, compared to the
number of uncolored order types on m + n points. Here unlabelled point sets are considered and
also sets where all triple orientations are inverse belong to the same order type.

CGT
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Since the time needed to compute all colorings and to filter out duplicates increases
tremendously as the order type gets larger, this approach to generate colored order types
is not further pursued. In future work, we plan to develop more sophisticated methods for
enumerating all bicolored order types that are of interest for specific applications like, for
example, minimizing the number of crossings.

6 Future Work

Although the algorithms in this paper are not optimized, they all take polynomial time and
serve as a proof of concept. Moreover, all our approaches only use the abstract information of
the colored point triples, and no geometric information of the point sets. Thus, in future work
we plan to focus on the performance of algorithms using bicolored order types, with respect
to running time and in which form the information of the bicolored order type is stored.
To this end, we will also consider other axiom systems that define uniform acyclic rank-3
oriented matroids—as mentioned in the introduction—or dual structures (e.g. colored wiring
diagrams), and see how some specific information, like the number of bicolored crossings,
can be read directly from the wiring diagram. Extending only those wiring diagrams that
are dual to a point set with, for example, a small crossing number, will lead to more efficient
algorithms to generate bicolored order types that are of interest for specific applications.
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