
Geometric Algorithms for k-NN Poisoning
Diego Ihara Centurion #Ñ

Department of Computer Science, University of Illinois at Chicago, USA

Karine Chubarian #Ñ

Department of Computer Science, University of Illinois at Chicago, USA

Bohan Fan #

Department of Computer Science, University of Illinois at Chicago, USA

Francesco Sgherzi #Ñ

Department of Computer Science, University of Illinois at Chicago, USA

Thiruvenkadam Sivaprakasam Radhakrishnan #

Department of Computer Science, University of Illinois at Chicago, USA

Anastasios Sidiropoulos #Ñ

Department of Computer Science, University of Illinois at Chicago, USA

Angelo Straight #

Department of Computer Science, University of Illinois at Chicago, USA

Abstract
We propose a label poisoning attack on geometric data sets against k-nearest neighbor classification.
We provide an algorithm that can compute an εn-additive approximation of the optimal poisoning in
n · 22O(d+k/ε)

time for a given data set X ∈ Rd, where |X| = n. Our algorithm achieves its objectives
through the application of multi-scale random partitions.

Keywords and phrases random partitions, algorithms, machine learning

Digital Object Identifier 10.57717/cgt.v4i2.55

Related Version https://arxiv.org/abs/2306.12377

Acknowledgements This work was partially supported by NSF grant 1815145.

1 Introduction

Recent developments in machine learning have spiked the interest in robustness, leading to
several results in adversarial machine learning [1, 2, 11]. A central goal in this area is the
design of algorithms that are able to impair the performance of traditional learning methods
by adversarially perturbing the input [3, 17, 19]. Adversarial attacks can be exploratory,
such as evasion attacks, or causative, poisoning the training data to affect the performance
of a machine learning algorithm or attack the algorithm itself. Backdoor poisoning is a type
of causative adversarial attack, in which the attacker has access to the whole or a portion
of the training data that they can perturb. Clean-label poisoning attacks are a type of
backdoor poisoning attack that perturb only the features of the training data leaving the
labels untouched, so as to make the poison less detectable. In the other end of the spectrum
are label poisoning attacks that perturb or flip the training data labels.

Why compute provably nearly-optimal poison attacks? A limitation with current
poisoning methods is that it is not possible to adversarially perturb an input so that the
performance of any algorithm is negatively affected. Moreover, it is generally not clear how
to provably compare different poisoning methods. We seek to address these limitations of
adversarial machine learning research using tools from computational geometry.

© Diego Ihara, Karine Chubarian, Bohan Fan, Francesco Sgherzi, Thiruvenkadam S.
Radhakrishnan, Anastasios Sidiropoulos and Angelo Straight
licensed under Creative Commons License CC-BY 4.0

Computing in Geometry and Topology: Volume 4(2); Article 4; pp. 4:1–4:12

mailto:dihara2@uic.edu
https://dihara2.people.uic.edu/
https://orcid.org/0000-0002-8468-0845
mailto:kchuba2@uic.edu
https://homepages.math.uic.edu/~kchuba2/
mailto:bfan4@uic.edu
mailto:fsgher2@uic.edu
https://fsgher2.people.uic.edu/
mailto:tsivap2@uic.edu
mailto:sidiropo@uic.edu
https://sidiropo.people.uic.edu/
mailto:astrai3@uic.edu
https://doi.org/10.57717/cgt.v4i2.55
https://creativecommons.org/licenses/by/4.0/
https://www.cgt-journal.org/

4:2 Geometric Algorithms for k-NN Poisoning

Specifically, we study the following optimization problem: Given some data set, X,
compute a small perturbation of X, so that the performance of a specific classifier deteriorates
as much as possible. An efficient solution to this optimal poisoning problem can be used to
compare the performance of different classification algorithms, as follows. Suppose we want
to compare the performance of a collection of classification algorithms, A1, ..., At, on some
fixed data set X, in the presence of a poisoning attack that produces a bounded perturbation,
X ′, of X. Ideally, we would like to have provable worst-case guarantees on the robustness of
A1, ..., At. However, such results are often hard to prove rigorously, and thus many existing
methods lack such guarantees. Since the poisoned data set X ′ is unknown, we cannot simply
run A1, ..., At on X ′ and compare the results. Instead, our method allows us to compute
from X some poisoned data set, X ′′, which is provably a nearly-optimal poison against the
specific classification task.

1.1 Robustness of k-nearest neighbors

We instantiate the above general optimization problem of computing nearly-optimal poison
attacks to the specific task of k-nearest neighbor classification. Nearest-neighbor based
algorithms are naturally robust due to the presence of an inherent majority voting mechanism.
In [12], they are used to provide individual and joint certifications for test predictions in the
presence of data poisoning and backdoor attacks. In [16], a defense algorithm is proposed
using k-nearest neighbors against label-flipping attacks. However, computing provably nearly-
optimal poisoning against such algorithms has not been studied prior to our work. We
provide approximation algorithms that compute a nearly-optimal label flipping poisoning
attack against k-nearest neighbors with provable guarantees.

1.2 Our results

We design and analyze poisoning algorithms against k-nearest neighbor classification (k-NN)
in the setting of binary label classification. The k-NN classifier is arguably one of the most
popular and well-studied methods used in machine learning and geometric data analysis [8].
The classifier works as follows: Given a set of labeled points, X ⊂ Rd, and some unlabeled
p ∈ Rd, we can compute a label for p by taking the most frequently occurring label in the
multiset of labels of the k nearest neighbors of p in X.

We formulate the poisoning problem against k-NN as follows. Given some set of points,
X, with binary labels, and some m ∈ N, the goal is to flip the labels of at most m points,
so that we maximize the number of points in X for which their predicted label differs from
their true label. We refer to the set of points with flipped labels as an m-poison and define
the number of points for which their predicted label differs from the original label as the
corruption. The following summarizes our results.

▶ Theorem 1. On input X ⊂ Rd, with |X| = n, and m ∈ N, Algorithm Poison-k-NN computes
a m-poison against k-NN, with expected corruption OPTm(X) − εn, in time n · 22O(d+k/ε) ,
where OPTm(X) denotes the maximum corruption of any m-poison.

While the above problem formulation only involves a fully labeled set X, typical tasks
involve a training set Xtrain and a test set Xtest. In order to address this case, we modify
the algorithm in Theorem 1 so that it computes a poison of the training set, so that the
prediction error on the test set deteriorates as much as possible. This result is summarized
in the following.

D.Ihara, K.Chubarian, B.Fan, F.Sgherzi, T.S.Radhakrishnan, A.Sidiropoulos and A.Straight 4:3

▶ Theorem 2. On input Xtrain, Xtest ⊂ Rd, with |Xtrain| = ntrain, |Xtest| = ntest, and
m ∈ N, Algorithm Poison-k-NN’ computes a m-poison against k-NN, with expected corruption
OPTm(Xtrain, Xtest) − εntest, in time (ntrain + ntest) · 22O(d+k/ε) , where OPTm(Xtrain, Xtest)
denotes the maximum corruption incurred on Xtest when all neighbors are chosen from
Xtrain, of any m-poison on Xtrain.

Algorithm Poison-k-NN’ is an adaptation of Poison-k-NN, and has a similar analysis.
Algorithm Poison-k-NN uses as a subroutine a procedure for computing a random partition
of a metric space. The random partition has the property that the diameter of each cluster
is upper bounded by some given Lipschitz function, while the probability of two points being
separated is upper bounded by a multiple of their distance divided by the cluster diameter
(see Section 2 for a formal definition). This is inspired by the multi-scale random partitions
invented by Lee and Naor [13] in the context of the Lipschitz extension problem. We believe
that our formulation could be of independent interest.

1.3 Related work

To the best of our knowledge, no prior work tackles the adversarial poisoning of geometric
algorithms giving provable bounds. The most traditional poisoning method is the fsgm
[9], which consists in adding, to each testing sample, noise with the same dimensionality
of the input and proportional to the gradient of the cost function in that point. This
approach is proven to be the most damaging adversarial example against linear models like
logistic regression. However, it is less effective on deep neural networks, as they are able to
approximate arbitrary functions [10]. pgd [15] improves upon fsgm by iteratively looking
for better adversarial examples for a given input toward the direction of the increase of the
cost function. However, although producing better adversarial samples, it still encounters
the same drawbacks of fsgm.

There are a few existing algorithms that perform label flipping attacks. In [16] they use
a greedy algorithm to flip the examples that maximize the error on a validation set, when
the classifier is trained on the poisoned dataset, and use k-NN to reassign the label in the
training set as the defense against this type of label flipping attacks. [20] model the label
attacks as a bilevel optimization problem targeting linear classifiers and also experiment
with the transferability of these attacks. Traditional poisoning methods, however, do not
offer provable guarantees on the reduction in performance, thus yielding results that are not
problem dependent but rather implementation or model dependent [5, 6, 7].

There have also been a few defenses proposed against label flipping attacks. In [18] they
propose a pointwise certified defense against adversarially manipulated data up to some
“radius of perturbation” through randomized smoothing. Specifically, each prediction is
certified robust against a certain number of training label flips.

1.4 Notation

For any k ∈ N, let [k] = {1, . . . , k}. Let M = (X, ρ) be a metric space. For any X ′ ⊆ X,
we denote by diamM (X ′) the diameter of X ′, i.e. diamM (X ′) = supx,y∈X′ ρ(x, y); we also
write diam(X ′) when M is clear from the context. For any x ∈ X, Y ⊆ X, we write
δ(x, Y) = infy∈Y ρ(x, y). For any metric space M = (X, ρ), any finite Y ⊂ X, any i ∈ N,
and any q ∈ X, let NNi(q, Y) denote the i-th nearest neighbor of q in Y .

CGT

4:4 Geometric Algorithms for k-NN Poisoning

1.5 Organization
The rest of the paper is organized as follows. Section 2 presents our result on random
partitions of metric spaces. Section 3 presents our algorithm for poisoning against k-NN
classifiers. We conclude and highlight some open problems in Section 4.

2 Random partitions of metric spaces

P0

P1

P2

P3

(a) (c)

(b)

γ = 4.3

P (Xi) = ⌊log(γ)⌋ = 2

γ

Xi

Figure 1 Illustration of the application of the multi-scale random partition approach to a set of
points. (a) We begin with a random partition and refine to produce an additional level. (b) The
selection of the level depends on the distance to the k-th neighbor. (c) The resulting partition is the
union of cells originating at different levels of granularity.

In this section, we introduce a random metric space partitioning scheme. The main idea
is to partition a given metric space so that the radius of each cluster is bounded by some
Lipschitz function, while ensuring that only a small fraction of pairs end up in different
clusters, in expectation. This partition is used by our algorithm for partitioning the problem
into several sub-problems for each cluster.

For any partition P of a ground set Y , and for any y ∈ Y , we denote by P (y) the unique
cluster in P that contains y. Let M = (X, ρ) be some metric space. Let P be a random
partition of M . For any ∆ > 0, we say that P is ∆-bounded if, with probability 1, for
all clusters C ∈ P , we have diam(C) ≤ ∆. For any β > 0, we say that a ∆-bounded P is
β-Lipschitz if for all x, y ∈ X,

Pr[P (x) ̸= P (y)] ≤ β
ρ(x, y)

∆ .

The infimum β > 0 such that for all ∆ > 0, M admits a ∆-bounded β-Lipschitz random
partition, is referred to as the modulus of decomposability of M , and is denoted by βM .

▶ Lemma 3 ([4]). For any d ∈ N, and for any subset of d-dimensional Euclidean space, M ,
we have that βM = O(

√
d).

D.Ihara, K.Chubarian, B.Fan, F.Sgherzi, T.S.Radhakrishnan, A.Sidiropoulos and A.Straight 4:5

The following uses ideas from [13] and [14].

▶ Lemma 4 (Multi-scale random partition). Let C > 0. Let M = (X, ρ) be a metric space,
and let r : X → R≥0. Then, there exists a random partition P of M , satisfying the following
conditions:
(1) With probability 1, for any p ∈ X,

diam(P (p)) ≤ r(p)C2

(2) For any p, q ∈ X,

Pr
P

[P (p) ̸= P (q)] ≤
(

2∥r∥Lip
log C

+ βM

)
ρ(p, q)
r(p)

Moreover, given M as input, the random partition, P can be sampled in time polynomial in
|X|.

Proof. Let B = ∥r∥Lip.
For any i ∈ Z, let Pi be a Ci-bounded βM -Lipschitz random partition of M . Thus, each

point x ∈ X is mapped to some cluster in each Pi. We construct P by assigning each x ∈ X

to a single one of these clusters. We first sample α ∈ [0, 1], uniformly at random. Then, for
each x ∈ X, we assign x to the cluster P⌈α+logC (r(x))⌉(x). This concludes the construction of
P . It remains to show that the assertion is satisfied.

For any p ∈ X, we have that P (p) ⊆ Pi(p), where i = ⌈α + logC(r(x))⌉ ≤ 2 + logC(r(x)).
Since Pi is Ci-bounded, it follows that

diam(P (p)) ≤ diam(Pi(p)) (P (p) ⊆ Pi(p))
≤ Ci (Pi is Ci-bounded)

≤ C2+logC (r(p))

= r(p)C2,

with probability 1, which establishes part (1) of the assertion.
It remains to establish part (2). Let p, q ∈ X. We may assume, without loss of generality,

that 0 < r(p) ≤ r(q). Let E1 be the event that ⌈α + logC(r(p))⌉ ≠ ⌈α + logC(r(q))⌉. We have

Pr[E1] = Pr[⌈α + logC(r(p))⌉ ≠ ⌈α + logC(r(q))⌉]
≤ | logC(r(p)) − logC(r(q))|

= logC

r(q)
r(p)

=
(

log r(q)
r(p)

)
/ (log C)

≤ (1/ log C) log r(p) + B · ρ(p, q)
r(p) (∥r∥Lip = B)

= (1/ log C) log
(

1 + B · ρ(p, q)
r(p)

)
≤ (1/ log C)2B

ρ(p, q)
r(p) . (1)

Conditioned on ¬E1, there exists t ∈ Z, such that t = ⌈α + logC(r(p))⌉ = ⌈α + logC(r(q))⌉;
let E2 be the event that Pt(p) ̸= Pt(q). Since Pt is Ct-bounded βM -Lipschitz, it follows that

Pr[E2] ≤ βM
ρ(p, q)

Ct
≤ βM

ρ(p, q)
C logC(r(p)) = βM

ρ(p, q)
r(p) . (2)

CGT

4:6 Geometric Algorithms for k-NN Poisoning

By (1) and (2) we obtain that

Pr[P (p) ̸= P (q)] ≤ ((1/ log C)2B + βM)ρ(p, q)
r(p) ,

which establishes part (2) of the assertion, and concludes the proof. ◀

Figure 1 illustrates the partitioning process.

3 Poisoning k-NN

In this section, we describe our poisoning algorithm, which is our main result.
Let d ∈ N, and let X ⊂ Rd. Let label : X → {1, 2}, and let k ∈ N be odd (to avoid

ties), with k ≤ n. For any p ∈ Rd, for any i ∈ [k], let Γi(p) be an i-th nearest neighbor of p,
breaking ties arbitrarily, and let

γi(p) = ∥p − Γi(p)∥2.

We write γ(p) = γk(p).

▶ Lemma 5. The function γ : Rd → R is 1-Lipschitz.

Proof. WLOG, let γ(p) ≥ γ(q). It is sufficient to prove that γ(p) ≤ ∥p − q∥ + γ(q), which
means Γk(p) is within distance ∥p − q∥ + γ(q) from p. Now consider two cases:
Case 1: Γk(p) falls in ball(q, γ(q)). By triangle inequality, γ(p) ≤ ∥p − q∥ + ∥Γk(p) − q∥ ≤

∥p − q∥ + γ(q).
Case 2: Γk(p) falls outside of ball(q, γ(q)). If γ(p) > ∥p − q∥ + γ(q), then all the k-nearest

neighbour of q are closer to p than Γk(p), which is a contradiction.
This concludes the proof. ◀

Now we consider the result of Lemma 4 in Euclidean space:

▶ Lemma 6 (Euclidean multi-scale random partition). Let ε > 0, there exists a random
partition P of X, satisfying the following conditions:
(1) The following statement holds with probability 1: For any p ∈ X,

diam(P (p)) ≤ 2k

ε
γ(p)28k/εO(

√
d)

(2) For any p, q ∈ X,

Pr[P (p) ̸= P (q)] ≤ ε∥p − q∥2

kγ(p) .

Moreover, P can be sampled in time polynomial in |X|.

Proof. Let M = (X, ρ) be the metric space obtained by setting ρ to be the Euclidean metric.
By Lemma 3 we have βM = O(

√
d). Let P be the random partition of X obtained by

applying Lemma 4, setting γ : X → R≥0 where r = Bγ, with B = 2kβM /ε, and C = 24k/ε.
By Lemma 5 we have that ∥γ∥Lip = 1, and thus ∥r∥Lip = ∥Bγ∥Lip = B∥γ∥Lip = B. The
assertion now follows by straightforward substitution on Lemma 4. ◀

Now we bound the size of cluster with Lemma 7.

▶ Lemma 7. Let h > 0, and let A ⊂ Rd be such that for all p ∈ A, we have diam(A) ≤ h·γ(p).
Then, |X ∩ A| = k · hd+O(1).

D.Ihara, K.Chubarian, B.Fan, F.Sgherzi, T.S.Radhakrishnan, A.Sidiropoulos and A.Straight 4:7

Proof. For any p ∈ Rd, we have that γ(p) is the distance between p and the k-th nearest
neighbor of p in X. It follows that the interior of ball(p, γ(p)) contains at most k points in X

(it contains at most k − 1 points in X if p /∈ X). In particular, the (closed) ball ball(p, γ(p)/2)
contains at most k points in X. Let

r∗ = inf
p∈A

γ(p).

It follows that for all p ∈ A,

|X ∩ ball(p, r∗/2)| ≤ k. (3)

We have by the assumption that diam(A) ≤ h · r∗, and thus A ⊆ ball(p∗, R∗), for some
p∗ ∈ A, and some R∗ = 2h · r∗. For any 0 < α < β, we have that any ball of radius β in Rd

can be covered by at most O(β/α)d = (β/α)d+O(1) balls of radius α. Therefore, A can be
covered by a set of at most (R∗/r∗)d+O(1) = hd+O(1) balls of radius r∗/2. Combining with
(3) it follows that

|X ∩ A| = k · hd+O(1),

which concludes the proof. ◀

3.1 The main poisoning algorithm
We are now ready to describe the main poisoning algorithm against k-NN. For any finite
Y ⊂ Rd, and for any integer i ≥ 0, let OPTi(X) be the maximum corruption that can be
achieved for X with a poison set of size at most i. Let corruption(X, Y) be the corruption of
poisoning X by flipping labels of point set Y ⊂ X. Now we describe our poisoning algorithm.

Algorithm Poison-k-NN for k-NN Poisoning: The input consists of X ⊂ Rd, m ∈ N,
and label : X → {1, 2}, with |X| = n.
Step 1. Sample the random partition P according to the algorithm in Lemma 6.
Step 2. For any cluster C ⊂ X in P , by Lemma 7 we have that |C| = k·(

√
d(2k/ε)28k/ε)d+O(1) =

(2k2/ε)·2(d+O(1))8k/ε. For any i ∈ {1, . . . , m}, we compute an optimal poisoning, SC,i ⊆ C,
for C with i poison points via brute-force enumeration. Each solution can be uniquely
determined by selecting the i points for which we flip their label. Thus, the number of
possible solutions is at most 2|C| = 2(2k2/ε)·2(d+O(1))8k/ε . The enumeration can thus be
done in time 2(2k2/ε)·2(d+O(1))8k/ε , for each cluster in P . Since there are at most n clusters,
the total time is n · 2(2k2/ε)·2(d+O(1))8k/ε = n · 22O(d+k/ε) .

Step 3. We next combine the partial solutions computed in the previous step to obtain
a solution for the whole pointset. This is done via dynamic programming, as follows.
We order the clusters in P arbitrarily, as P = {C1, . . . , C|P |}. For any i ∈ {0, . . . , |P |},
j ∈ {1, . . . , m}, let

Ai,j = OPTj(C1 ∪ . . . ∪ Ci).

We can compute Ai,j via dynamic programming using the formula

Ai,j =
{

max
t∈[j]

(Ai−1,t + corruption(Ci, SCi,j−t)) if i > 0

0 otherwise

The size of the dynamic programming table is O(|P | · m) = O(nm). The same recursion
can also be used to compute an optimal k-poison, Y , for C1 ∪ . . . ∪ C|P |. The algorithm
terminates and outputs Y as the final poison for X.

CGT

4:8 Geometric Algorithms for k-NN Poisoning

Correctness of dynamic programming. By definition, Ai,j is the optimal (maximum) cor-
ruption with j poison points on the first i clusters (C1 ∪ . . . ∪ Ci). Ai,0 = 0 for all i. Suppose
the solution Ai−1,j is correct, then Ai,j is the maximum of optimal corruption for poisoning
the first i − 1 clusters with t points, plus the corruption using the remaining j − t points on
i-th cluster. ◀

▶ Lemma 8. E[corruption(X, Y)] ≥ OPTm(X) − εn.

Proof. Let Z ⊆ X be an optimal k-poison for X. Recall that P is the random partition
sampled in Step 1.

For any x ∈ X, i ∈ N, let Ex,i be the event that the cluster of P containing x, does not
contain the i-nearest neighbor of x in X; i.e. NNi(x, X) /∈ P (x). Let also Ex be the event
that the cluster of P containing x, does not contain all of the k-nearest neighbors of x in X;
i.e.

Ex = Ex,1 ∨ . . . ∨ Ex,k.

Thus

Pr[Ex] = Pr[Ex,1 ∨ . . . ∨ Ex,k]

≤
k∑

i=1
Pr[Ex,i] (union bound)

=
k∑

i=1
Pr[P (x) ̸= P (NNi(x)]

≤
k∑

i=1

ε∥x − NNi(x)∥2

kγ(p) (Lemma 6)

≤ k
ε∥x − NNk(x)∥2

kγ(p)
= ε (4)

Let

X ′ = {x ∈ X : {NN1(x), . . . , NNk(x)} ̸⊆ P (x)}.

By (4) and the linearity of expectation, it follows that

E[|X ′|] =
∑

x∈|X|

Pr[Ex] ≤ ε|X| = εn. (5)

Let Y be the poison that the algorithm returns. Note that X \ X ′ = C1 ∪ . . . ∪ C|P |.
For any x ∈ X \ X ′, if Y corrupts x in X \ X ′, then it must also corrupt x in X (since,
by the definition of X, all k-nearest neighbors of x are in X \ X ′). Thus, OPTm(X) ≥
OPTm(X \ X ′) ≥ OPTm(X) − |X ′|, and moreover,

corruption(X, Y) ≥ corruption(X \ X ′, Y)
= OPTm(X \ X ′)

(by the dynamic program)
≥ OPTm(X) − |X ′|.

Combining with (5) and the linearity of expectation we get E[corruption(X, Y)] ≥ OPTm(X)−
E[|X ′|] ≥ OPTm(X) − εn, which concludes the proof. ◀

D.Ihara, K.Chubarian, B.Fan, F.Sgherzi, T.S.Radhakrishnan, A.Sidiropoulos and A.Straight 4:9

Proof of Theorem 1. The bound on the corruption follows by Lemma 8. The running time
is dominated by Step 2, which takes time n · 22O(d+k/ε) . ◀

3.2 Poisoning k-NN: with train and test datasets
In this section, we describe the poisoning algorithm that will be used to obtain an m-poison
with the guarantees of Theorem 2. This follows the algorithm from 3.1 with three major
differences:

The γi(p) function is only defined with respect to the points within Xtrain.
The random partition in Step 1 is only on Xtrain.
The corruption in Step 2 is measured only on Xtest for the test points that fall within
the same cluster.

For any finite Y ⊂ Rd, and any integer i ≥ 0, let OPTi(Xtrain, Xtest) be the maximum
corruption that can be achieved for Xtrain, Xtest with a poison set size of at most i. Let
corruption(Xtrain, Xtest, Y) be the corruption of Xtest by flipping the labels of Y ⊆ Xtrain.

Algorithm Poison-k-NN for k-NN Poisoning with Train-Test: The input consists of
Xtrain and Xtest ⊂ Rd, with |Xtrain| = ntrain, |Xtest| = ntest and a map label : X → {1, 2}
that maps Xtrain and Xtest to their corresponding labels.
Step 1. Sample the random partition P of Xtrain according to the algorithm in Lemma 6.
Step 2. For any cluster C ⊂ Xtrain in P , by Lemma 7 we have that

|C| = k · (
√

d(2k/ε)28k/ε)d+O(1) = (2k2/ε) · 2(d+O(1))8k/ε.

For any i ∈ {1, . . . , m}, we compute an optimal poisoning, SC,i ⊆ C, for C with i

poison points via brute-force enumeration. Each solution can be uniquely determined
by selecting the i points for which we flip their label. Thus, the number of possible
solutions is at most 2|C| = 2(2k2/ε)·2(d+O(1))8k/ε . The enumeration can thus be done in time
2(2k2/ε)·2(d+O(1))8k/ε , for each cluster in PX . For each possible solution, we also measure
the corruption of the poisoning on the points in test set that fall within the same cluster,
which takes O(ntest) time. Since there are at most ntrain clusters, the total time is
(ntrain + ntest) · 2(2k2/ε)·2(d+O(1))8k/ε = (ntrain + ntest) · 22O(d+k/ε) .

Step 3. We next combine the partial solutions computed in the previous step to obtain
a solution for the whole pointset. This is done via dynamic programming, as follows.
We order the clusters in P arbitrarily, as P = {C1, . . . , C|P |}. For any i ∈ {0, . . . , |P |},
j ∈ {1, . . . , m}, let

Ai,j = OPTj(C1 ∪ . . . ∪ Ci).

We can compute Ai,j via dynamic programming using the formula

Ai,j =
{

max
t∈[j]

(Ai−1,t + corruption(Ci, SCi,j−t)) if i > 0

0 otherwise

The size of the dynamic programming table is O(|P | · m) = O(nm). The same recursion
can also be used to compute an optimal k-poison, Y , for C1 ∪ . . . ∪ C|P |. The algorithm
terminates and outputs Y as the final poison for X.

▶ Lemma 9. E[corruption(Xtrain, Xtest, Y)] ≥ OPTm(Xtrain, Xtest) − εntest.

CGT

4:10 Geometric Algorithms for k-NN Poisoning

Proof. Let Z ⊆ Xtrain be an optimal k-poison for Xtest. Recall that P is the random
partition sampled at Step 1.

For any x ∈ Xtest, i ∈ N, let Ex,i be the event that the cluster of P containing x, does
not contain the ith-nearest neighbor of x in Xtrain; i.e. NNi(x) /∈ P (x). Let also Ex be the
event that the cluster of P containing x, does not contain all of the k-nearest neighbors of x

in Xtrain; i.e.

Ex = Ex,1 ∨ . . . ∨ Ex,k.

Thus

Pr[Ex] = Pr[Ex,1 ∨ . . . ∨ Ex,k]

≤
k∑

i=1
Pr[Ex,i] (union bound)

=
k∑

i=1
Pr[P (x) ̸= P (NNi(x)]

≤
k∑

i=1

ε∥x − NNi(x)∥2

kγ(p) (Lemma 6)

≤ k
ε∥x − NNk(x)∥2

kγ(p)
= ε (6)

Let

X ′ = {x ∈ Xtest : {NN1(x), . . . , NNk(x)} ̸⊆ P (x)}.

By (6) and the linearity of expectation, it follows that

E[|X ′|] =
∑

x∈|Xtest|

Pr[Ex] ≤ ε|Xtest| = εntest. (7)

From (7), it follows that,

corruption(Xtrain, Xtest, Y) ≥ corruption(Xtrain, Xtest \ X ′, Y)
= OPTm(Xtrain, Xtest \ X ′)

(by the dynamic program)
≥ OPTm(Xtrain, Xtest) − |X ′|.

Combining with (7) and by linearity of expectation we get E[corruption(X, Y)] ≥
OPTm(X) − E[|X ′|] ≥ OPTm(X) − εntest, which concludes the proof. ◀

Proof of Theorem 2. The bound on the corruption on the test set follows Lemma 9. The
running time is dominated by Step 2 of 3.2 which takes time (ntrain + ntest) · 22O(d+k/ε) . ◀

4 Conclusion

We have introduced an approximation algorithm along with provable guarantees for a label
flipping poisoning attack against the geometric classification task of k-nearest neighbors. Our
poisoning framework, specifically the application of approximation algorithms using random
metric partitions could also be extended to propose similar defense algorithms.

D.Ihara, K.Chubarian, B.Fan, F.Sgherzi, T.S.Radhakrishnan, A.Sidiropoulos and A.Straight 4:11

References
1 Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial

training for adversarial robustness. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pages 4312–4321. ijcai.org, 2021.

2 Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognit., 84:317–331, 2018.

3 Nicholas Carlini. Poisoning the unlabeled dataset of semi-supervised learning. In Michael
Bailey and Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, pages 1577–1592. USENIX Association, 2021.

4 Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin. Ap-
proximating a finite metric by a small number of tree metrics. In Proceedings 39th Annual
Symposium on Foundations of Computer Science (Cat. No. 98CB36280), pages 379–388. IEEE,
1998.

5 Anshuman Chhabra, Abhishek Roy, and Prasant Mohapatra. Suspicion-free adversarial attacks
on clustering algorithms. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, New York, February 7-12, 2020, pages 3625–3632. AAAI Press, 2020.

6 Anshuman Chhabra, Adish Singla, and Prasant Mohapatra. Fairness degrading adversarial
attacks against clustering algorithms. CoRR, abs/2110.12020, 2021.

7 Antonio Emanuele Cinà, Alessandro Torcinovich, and Marcello Pelillo. A black-box
adversarial attack for poisoning clustering. Pattern Recognition, 122:108306, 2022.
URL: https://www.sciencedirect.com/science/article/pii/S0031320321004866, doi:
10.1016/j.patcog.2021.108306.

8 Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis. nonparametric discrimination:
Consistency properties. International Statistical Review/Revue Internationale de Statistique,
57(3):238–247, 1989.

9 Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL: http:
//arxiv.org/abs/1412.6572.

10 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989. URL:
https://www.sciencedirect.com/science/article/pii/0893608089900208, doi:10.1016/
0893-6080(89)90020-8.

11 Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar.
Adversarial machine learning. In Proceedings of the 4th ACM workshop on Security and
artificial intelligence, pages 43–58, 2011.

12 Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of nearest neighbors
against data poisoning attacks. CoRR, abs/2012.03765, 2020. URL: https://arxiv.org/abs/
2012.03765, arXiv:2012.03765.

13 James R Lee and Assaf Naor. Extending lipschitz functions via random metric partitions.
Inventiones mathematicae, 160(1):59–95, 2005.

14 James R Lee and Anastasios Sidiropoulos. On the geometry of graphs with a forbidden
minor. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages
245–254, 2009.

15 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks, 2019. arXiv:1706.06083.

16 Andrea Paudice, Luis Muñoz-González, and Emil C Lupu. Label sanitization against label
flipping poisoning attacks. In Joint European conference on machine learning and knowledge
discovery in databases, pages 5–15. Springer, 2018.

CGT

https://www.sciencedirect.com/science/article/pii/S0031320321004866
https://doi.org/10.1016/j.patcog.2021.108306
https://doi.org/10.1016/j.patcog.2021.108306
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://arxiv.org/abs/2012.03765
https://arxiv.org/abs/2012.03765
https://arxiv.org/abs/2012.03765
https://arxiv.org/abs/1706.06083

4:12 Geometric Algorithms for k-NN Poisoning

17 Nikolaos Pitropakis, Emmanouil Panaousis, Thanassis Giannetsos, Eleftherios Anastasiadis,
and George Loukas. A taxonomy and survey of attacks against machine learning. Comput.
Sci. Rev., 34, 2019.

18 Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. Certified robustness
to label-flipping attacks via randomized smoothing. In International Conference on Machine
Learning, pages 8230–8241. PMLR, 2020.

19 Koosha Sadeghi, Ayan Banerjee, and Sandeep K. S. Gupta. A system-driven taxonomy of
attacks and defenses in adversarial machine learning. IEEE Trans. Emerg. Top. Comput.
Intell., 4(4):450–467, 2020.

20 Mengchen Zhao, Bo An, Wei Gao, and Teng Zhang. Efficient label contamination attacks
against black-box learning models. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pages 3945–3951, 2017. doi:10.24963/ijcai.
2017/551.

https://doi.org/10.24963/ijcai.2017/551
https://doi.org/10.24963/ijcai.2017/551

	1 Introduction
	1.1 Robustness of k-nearest neighbors
	1.2 Our results
	1.3 Related work
	1.4 Notation
	1.5 Organization

	2 Random partitions of metric spaces
	3 Poisoning k-NN
	3.1 The main poisoning algorithm
	3.2 Poisoning k-NN: with train and test datasets

	4 Conclusion

