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Abstract
Let P be an n-sided polygon on the plane, where n ≥ 4. A quadrangulation of P is a geometric plane
graph obtained from P by adding edges to the interior of P so that every finite face is quadrilateral.
It is easy to see that P does not always admit a quadrangulation. So Ramaswami et al. [15]
introduced “Steiner points", which are auxiliary points added to P which helps quadrangulatability
of P . Those points are said to be inner and outer if they are added to the interior and the exterior of
P , respectively. They proved that every P with Steiner points added admits a quadrangulation, and
estimated the number of those Steiner points by n, when all Steiner points are inner, and when all
Steiner points are outer. On the other hand, Hidaka et al. [8] used the notion of “spirality of P " which
measures how far P is from being convex, and considered how a polygon P of spirality k admits a
quadrangulation with inner Steiner points. In this paper, we consider the quadrangulatability of a
polygon of P of spirality k when all Steiner points are outer, and when both inner and outer Steiner
points are allowed.
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1 Introduction

We consider only a geometric plane graph G, i.e., a plane graph such that all vertices of G

are distinct points on the plane, and that all edges are straight segments. Let V (G) and
E(G) denote the sets of vertices and edges of G respectively, where we denote the order of
G (i.e., the number of vertices) by |G|.

Let n ≥ 3 be an integer, and an n-sided polygon P is a planar geometric drawing of a
cycle of length n. A triangulation of P is a geometric plane graph with vertex set V (P ) such
that its outer cycle coincides with P and that each finite face is triangular.

The following fact is well-known:

▶ Proposition 1. Every n-sided polygon with n ≥ 3 admits a triangulation.

Proposition 1 is an important lemma for the well-known Fisk’s proof of Art Gallery
Theorem [6], which states that every n-sided art gallery can be guarded by at most ⌊ n

3 ⌋
watchmen, and the estimation is known to be the best possible. See [14] for the detail.

In this paper, we focus on a quadrangulation of an n-sided polygon P . By an easy parity
argument, we see that if P admits a quadrangulation, then n must be an even integer at least 4.
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9:2 Quadrangulating a Polygon with a Fixed Spirality using Steiner Points

We call an n-sided polygon with even (resp., odd) n simply an even-sided (resp., odd-sided)
polygon. Let us consider whether a given even-sided polygon P admits a quadrangulation.
Figure 1 shows an example of an even-sided polygon P and a quadrangulation of P . We say
that P is quadrangulatable if P admits a quadrangulation. It is known that if P consists of
only horizontal and vertical segments, then P is quadrangulatable [11].

Figure 1 Even-sided polygon P and a quadrangulation of P , in which we color the vertices of P

black and white alternately along the boundary. Since every quadrangulation G of P is bipartite,
every edge of G joins black and white vertices of P . Constructing a quadrangulation of P , this
black-white coloring of P is often helpful.

However, we immediately encounter a number of counterexamples, that is, even-sided
polygons which are not quadrangulatable, as shown in Figure 2. (If a polygon P admits a
quadrangulation, then we have to put an edge in the interior of P joining black and white
vertices, but we can add no such diagonal to these polygons.)

Figure 2 Even-sided polygons which admit no quadrangulation

Ramaswami et al. [15] introduced “Steiner points” for a polygon P as auxiliary points to
help a construction of quadrangulations of P . That is, a Steiner point is a point put in any
position of the interior or the exterior of P , where the former is an inner Steiner point and
the latter outer. Let S be a set of Steiner points for P , where we put S = SI ∪ SO, and SI

and SO are inner and outer Steiner points. We say that a polygon P is quadrangulatable with
a set S of Steiner points if there exists a plane geometric graph G with vertex set V (P ) ∪ S

such that
(i) the outer cycle of G is obtained from P by the following procedures: for each v ∈ SO, we

replace an edge xy ∈ E(P ) with the path xvy, and
(ii) every finite face of G is quadrilateral.
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We call G a quadrangulation of P with Steiner points S.
Figure 3 shows that an odd-sided polygon P and its quadrangulation with one inner

Steiner point v and one outer Steiner point u. Note that we do not add an outer Steiner
point to an edge whose endpoint is a Steiner point. As far as we use an outer Steiner point,
we do not need a restriction of a polygon P to be even-sided, and an odd-sided polygon
requires at least one outer Steiner point for its quadrangulation.

Figure 3 A quadrangulation of a polygon P with an inner Steiner point v and an outer Steiner
point u

Ramaswami et al. [15] proved the the following two results, in which one is for quadran-
gulations of a polygon with inner Steiner points, and the other is one with outer Steiner
points, respectively:

▶ Theorem 2 (Ramaswami et al. [15]). Every n-sided polygon with n ≥ 4 even admits a
quadrangulation with at most ⌊ n−2

4 ⌋ inner Steiner points.

▶ Theorem 3 (Ramaswami et al. [15]). Every n-sided polygon with n ≥ 3 admits a quadran-
gulation with at most ⌊ n

3 ⌋ outer Steiner points. Moreover, the bound for the number of those
points is best possible.

On the other hand, Nakamoto et al. [13] defined the “spirality” of a polygon P which
describes a shape of P , as follows.

Let P = v1 · · · vn be an n-sided polygon, where V (P ) = {v1, . . . , vn}. We say that vi is
convex (resp., reflex) if the inner angle at vi is less (resp., greater) than π, where we suppose
that no vi has inner angle equal to π. The interval [vp, · · · , vq] with p ≤ q is a spiral if vi is
reflex for i = p, p + 1, . . . , q but vp−1 and vq+1 are convex. The spirality of P is the number
of spirals of P (see Figure 4). We note that if P has spirality k, then |P | ≥ 2k, since there is
at least one convex vertex between two consecutive spirals in P . (A similar notion measuring
convexity is known [1], but this seems to be different from ours.) A motivation for defining
the spirality is to point out that the number of Steiner points for quadrangulating a polygon
is essentially controlled by this invariant.

Hidaka et al. [8] proved the following theorem which estimates the number of inner Steiner
points of a polygon of a fixed spirality.

▶ Theorem 4 (Hidaka et al. [8]). Let P be an even-sided polygon of spirality k ≥ 1. Then P

admits a quadrangulation with at most 2k − 2 inner Steiner points. Moreover, the estimation
for the number of those points is best possible for every k.

Figure 5 shows that the estimation in Theorem 4 is best possible, since the polygon P

with spirality k requires at least 2k − 2 inner Steiner points for its quadrangulation. We note
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9:4 Quadrangulating a Polygon with a Fixed Spirality using Steiner Points

Figure 4 Two polygons of spirality 2, where the marked vertices are reflex

that the examples in Figure 5 shows a tightness of Theorem 2 as well, as in the following.
Since the polygon P with spirality k has n = 8k − 6 vertices and requires at least 2k − 2
inner Steiner points, the number of inner Steiner points S for P is

|S| ≥ 2k − 2 = 2 · n + 6
8 − 2 = n − 2

4 ,

though Ramaswami et al. did not give such an example in [15].

Figure 5 A polygon of spirality k = 6 requiring at least inner 2k − 2 Steiner points for its
quadrangulation. Each of the shaded parts requires at least one inner Steiner point, and this polygon
has 2k − 2 pairwise disjoint such parts.

Theorem 4 asserts that an even-sided polygon P is quadrangulatable (with no Steiner
points) if P has spirality at most one, which were firstly proved in [13]. Theorem 4 seems to
be more interesting than Theorem 2, since the spirality describes a shape of a polygon and
since a polygon with a fixed spirality can have arbitrarily large number of vertices, as shown
in Figure 4.

In this paper, we prove the following two theorems for quadrangulatability of a polygon
of a fixed spirality when all Steiner points are outer, and when both inner and outer Steiner
points are allowed, respectively.

▶ Theorem 5. Let P be a polygon of spirality k ≥ 1. Then P admits a quadrangulation with
at most 2k − 1 outer Steiner points. Moreover, the estimation for the number of those points
is best possible for every k.

▶ Theorem 6. Let P be a polygon of spirality k ≥ 1. Then P admits a quadrangulation
with at most k Steiner points, where inner and outer Steiner points are used. Moreover, the
estimation for the number of those points is best possible for every k.
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As related topics, a triangulation of a planar point set is well-studied in the literature, and
we can find many results on their generation and flip operations [4, 5, 12]. Every planar point
set K admits a triangulation, that is, a geometric plane graph whose vertex set is K such that
the outer cycle coincides with the convex hull of K, and that each finite face is triangular.
However, not every point set admits a quadrangulation, and hence they sometimes need
Steiner points. Those results can be found in [2, 3, 7, 10].

2 Proof of the theorems

In this section, we prove Theorems 5 and 6. Before proceeding to proving them, we consider
a triangulation on a polygon, and then observe a relation between triangulations and
quadrangulations of a polygon.

Let P be an n-sided polygon with n ≥ 3. Then, by Proposition 1, P admits a triangulation,
denoted by TP . A face f of TP is an inner triangle if no edge of f is contained in E(P ). In our
argument, the inner triangles of TP play an essential role for constructing a quadrangulation
of P from TP .

Figure 6 A polygon P , a triangulation TP of P , the graph T ∗
P

Let T ∗
P denote the dual tree of TP , that is, the graph whose vertices are the triangular

faces of TP , in which two vertices of T ∗
P are adjacent if the corresponding two faces of TP

share an edge. Note that T ∗
P is a tree of maximum degree at most 3, and that an inner

triangle of TP corresponds to a vertex of degree 3 in T ∗
P .

In this section, for the simplicity of terminology, we call a tree of maximum degree at
most k a k-tree, and a vertex of degree k a k-vertex. It is easy to see that a triangulation TP

of a polygon P has a spanning quadrangulation, i.e., a quadrangulation of P , if and only if
the dual tree T ∗

P has a perfect matching. Moreover, a triangulation TP with m outer Steiner
points added has a spanning quadrangulation if and only if T ∗

P with m 1-vertices attached to
a vertex of T ∗

P of degree 1 or 2 has a perfect matching (see Figure 7). Note that we cannot
attach a 1-vertex to a 3-vertex, since an inner triangle is not incident to an edge of P .

In order to estimate the number of outer Steiner points to be added for quadrangulating
a polygon P , we need the following lemma guaranteeing the existence of a triangulation TP

of P with few inner triangles.

▶ Lemma 7. Let P be a polygon of spirality k ≥ 1. Then P admits a triangulation with at
most 2k − 2 inner triangles.

The following proof of Lemma 7 is similar to that of Lemma 7 in [8], which states that a
2-colored even-sided polygon P of spirality k ≥ 1 admits a triangulation with at most 2k − 2
monochromatic faces. So the readers should refer it.
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9:6 Quadrangulating a Polygon with a Fixed Spirality using Steiner Points

Figure 7 Triangulation TP , quadrangulation of P with a single outer Steiner point, and perfect
matching of the dual tree

Proof of Lemma 7. Since P has a spirality k, P has k spirals A1, . . . , Ak. Then removing
them from P , we get k paths, say B1, . . . , Bk, where each Bi consists of only convex vertices
of P . Let TP be a triangulation of P with fewest inner triangles.

Suppose that TP has an inner triangle ∆ bounded by xyz. We claim that no two vertices
of ∆ are contained in the same Ai nor the same Bj .

For contradictions, we firstly suppose that x and y are contained in the same spiral Ai.
Then we can take the path L in Ai between x and y, where we put L = v1 · · · vh with x = v1
and y = vh. Since ∆ is an inner triangle, we have h ≥ 3. By the property of Ai, the inner
angle at each vj with j = 2, . . . , h − 1 is greater than π, and hence the straight segment xy

of ∆ cannot exist in the interior of P , a contradiction.
Secondly, suppose that x and y are contained in the same Bi. Similarly to the above case,

Bi contains a path L = v1 · · · vh joining x = v1 and y = vh, where h ≥ 3. Since v1, . . . , vh

are all convex in P , the region R in TP bounded by the cycle v1 · · · vhz is a convex polygon.
Then, replacing all edges in the interior of R with zvj with j = 2, . . . , h − 1, we can eliminate
∆. Moreover, these operations create no new inner triangle, and so we get a triangulation of
P which has a fewer number of inner triangles, a contradiction.

Finally observe that TP is combinatorially a maximal outerplane graph. Contracting
each Ai and each Bj into a single vertex respectively, we get a maximal outerplane graph
with 2k vertices, denoted by T̃P . By the above observation for inner triangles, every inner
triangle of TP remains in T̃P . On the other hand, by an easy computation of Euler’s formula,
T̃P has exactly 2k − 2 finite faces, and hence TP has at most 2k − 2 inner triangles. ◀

We proceed to a proof of Theorem 5, for which we show the following two propositions.

▶ Proposition 8. Every polygon of spirality k ≥ 1 admits a quadrangulation with at most
2k − 1 outer Steiner points.

Proof. Let P be a polygon of spirality k, and let TP be a triangulation of P with fewest
inner triangles. By Lemma 7, the number of inner triangles is at most 2k − 2. Therefore, the
dual tree T ∗

P of TP is a 3-tree with at most 2k − 2 3-vertices.
By the above observation between a quadrangulation of P and a perfect matching of T ∗

P ,
we prove that for a 3-tree T with m 3-vertices, a tree obtained from T by adding at most
m + 1 1-vertices to the vertices of T has a perfect matching, by induction on m.

If m = 0, then T is a path with at least one vertex. Then, attaching at most one 1-vertex
to the path, we get one with even order, which has a perfect matching.
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So we may suppose m > 0. We can choose a 3-vertex v of T such that at least two
components, say P1 and P2, of T − v are a path. If |P1| is even, then P1 has a perfect
matching. Otherwise, P1 with a single 1-vertex attached has a perfect matching. The
remaining graph T ′ = T − V (P1) is a tree with m − 1 3-vertices, and hence by induction
hypothesis, T ′ with at most m 1-vertices added has a perfect matching. Therefore, T with
at most m + 1 1-vertices added has a perfect matching.

Consequently, since m ≤ 2k − 2, we can conclude that every polygon with at most 2k − 2
inner triangles admits a quadrangulation with at most 2k − 1 outer Steiner points. ◀

▶ Proposition 9. For any k ≥ 1, there exists a polygon of spirality k which requires at least
2k − 1 outer Steiner points for its quadrangulation.

Proof. Let P be the polygon of spirality k shown in Figure 8. The figure shows only the case
when k = 4, but one can easily extend the shape to have any spirality k ≥ 2. Adding m outer
Steiner points to P to obtain a new polygon R, we suppose that we get a quadrangulation QR

of R, and prove m ≥ 2k −1. It is easy to see that QR can be transformed into a triangulation,
denoted by TR, by adding a single diagonal to each face of QR.

Figure 8 A polygon P of spirality k = 4 requiring at least 2k − 1 outer Steiner points

Let TP be a triangulation of P , and we consider how TR is obtained from TP . We first
give the following claim.

▷ Claim 1. The polygon P admits a unique triangulation TP , and in particular, Tp must
have 2k − 2 inner triangles, as shown in Figure 9.

Proof. Figure 10 shows a local structure of P , where we label vertices a, b, c, x. Consider a
face f of TP containing the vertex x. Then x can see no vertex of P other than a and b,
and hence f is bounded by xab in TP . Next we consider another face f ′ of TP containing
the edge ab. Then a vertex of f ′ other than a and b must exists in the shaded region of the
figure, which contains only the vertex c. Therefore, f ′ is the inner triangle of TP bounded by
abc. In this way, we can determine the 2k − 2 inner triangles of TP in P . Moreover, starting
these inner triangles, we can uniquely determine all edges of Tp as shown in Figure 9. ◁

By Claim 1, we let T1, . . . , T2k−2 be the inner triangles in TP , which are the shaded
regions in Figure 9. Suppose that P is deformed into R by outer Steiner points, and we

CGT



9:8 Quadrangulating a Polygon with a Fixed Spirality using Steiner Points

Figure 9 A triangulation Tp and the 2k − 2 inner triangles

Figure 10 Inner triangle Ti in TP

consider a triangulation TR of R. Some of T1, . . . , T2k−2 will still be inner triangles of TR,
and let U be the set of such inner triangles in TP . Let

J = {i ∈ {1, . . . , 2k − 2} : Ti /∈ U}.

Then we have the following claim.

▷ Claim 2. Each Ti with i ∈ J requires at least one outer Steiner point pi, and all the
elements in {pi : i ∈ J} can be taken to be distinct.

Proof. Figure 11 (1) shows a local structure of Ti, where we label vertices a, b, c, x, y, z, w as
in the figure. Putting a single outer Steiner point s in one of the shaded regions and replacing
an edge of P with a path of length 2 containing s, we can break Ti in the triangulation TR,
as in Figure 11 (2). We prove that in order to break Ti in TR, we must add an outer Steiner
point to at least one of bx, bz, cy, the red edges in the figure (1).

Suppose that none of bx, bz, cy receives an outer Steiner point for R. Let us find the
distinct neighbors x = u1, . . . , um = z of b and triangular faces buiui+1 in TR in the clockwise
order, for i = 1, . . . , m−1. (See Figure 11 (3), which shows a case when a single outer Steiner
point is added to each of ax and cw.) Note that each ui is either a vertex of P or one of the
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Figure 11 Outer Steiner point for Ti with i ∈ J

outer Steiner points added. Observe that either a = u2 or a = u3 (the figure (3) shows the
latter), since no outer Steiner point is added to bx and bz in R by the assumption, and since
x can see only a, b and the outer Steiner point added to ax if it exists. Next, when a = uk

with k ∈ {2, 3}, we have uk+1 = c for the following reason. A candidate of uk+1 should be
seen from both a and b, and hence such a point is c, or one contained in either bz or cy. So
we have c = uk+1, since the latter does not happen by the assumption. Hence we find the
face Ti bounded by bukuk+1 = bac. Thus, if Ti is broken in TR, then at least one of the three
edges bx, bz, cy, called the subdivide candidates for Ti, contains an outer Steiner point, say pi.

Finally we consider all pi for i ∈ J . Observe that for any distinct i, j ∈ J , the subdivide
candidates for Ti and those for Tj are disjoint in P (as in Figure 9). Hence all the outer
Stainer points pi with i ∈ J are distinct. ◁

We first suppose J = ∅, that is, all inner triangles T1, . . . , T2k−2 of TP remain in TR.
Let W = {v1, v2, . . . , v2k−2} be the set of 3-vertices of the dual tree T ∗

P corresponding to
T1, . . . , T2k−2. Then T ∗

P − W has 4k − 3 components D1, . . . , D4k−3, each of which has odd
order. (See the left of Figure 12.) We note that adding m outer Steiner points to P to obtain
R increases the number of faces of triangulations by m. Hence the order of the dual tree
increases by m, but the 3-vertices v1, . . . , v2k−2 are fixed in this case. Hence the dual tree
of TR, denoted by T ∗

R, is obtained from T ∗
P by modifying each Di with i = 1, . . . , 4k − 3, so

that T ∗
R has a perfect matching. Since each Di has odd order, Di requires at least one of the

m vertices added or at least one vertex in W , as shown in the right of Figure 12. Hence we
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9:10 Quadrangulating a Polygon with a Fixed Spirality using Steiner Points

have the following estimation:

m ≥ o(P − W ) − |W |
= (4k − 3) − (2k − 2)
= 2k − 1,

where o(·) denotes the number of components of the graph with odd order.

Figure 12 The dual tree T ∗
P and a perfect matching of T ∗

R

Secondly suppose that J ̸= ∅. Let U∗ be the set of 3-vertices of T ∗
P corresponding to the

elements of U , where we note that U∗ ∪ {vi : i ∈ J} = W . Observe that U∗ is a cut set of
T ∗

P and that T ∗
P − U∗ has exactly (4k − 3) − 2|J | components. Let L be any component of

T ∗
P − U∗, and suppose that L has h 3-vertices vi with i ∈ J , where h ≥ 0. Then L consists

of such h 3-vertices and 2h + 1 odd paths of T ∗
P − W , and hence

|L| = h + (2h + 1) = 3h + 1.

By Claim 2, L receives at least h vertices to break h inner triangles Ti with i ∈ J . Since
|L| + h = (3h + 1) + h ≡ 1 (mod 2), L must receive at least h + 1 vertices from the m

vertices added or those in U∗, in order to have even order. Remember that T ∗
P − U∗ has

(4k − 3) − 2|J | components, and observe that |U∗| = 2k − 2 − |J |, and that
∑

L h = |J |.
Therefore, we get the following:

m ≥

(∑
L

(h + 1)
)

− |U∗|

=
∑

L

h +
∑

L

1 − (2k − 2 − |J |)

= |J | + (4k − 3) − 2|J | − (2k − 2 − |J |)
= 2k − 1.

Therefore, P requires at least 2k − 1 outer Steiner points for its quadrangulation. ◀

Proof of Theorem 5. Theorem 5 follows from Propositions 8 and 9. ◀

Before proving Theorem 6, we verify an operation in the dual tree T ∗
P of a polygon

P corresponding to the addition of a single inner Steiner point to an inner triangle of a
triangulation TP . As in Figure 13, the operation is to replace a 3-vertex v incident to three
vertices x1, x2 and x3 by a triangle v1v2v3 with vi joined to xi, for i = 1, 2, 3. We call this
operation a triangular expansion of v.
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Figure 13 A triangular expansion of a 3-vertex in a 3-tree

Proof of Theorem 6. The proof proceeds similarly to that of Theorem 5. For a polygon P

of spirality k, we take a triangulation TP of P with at most 2k − 2 inner triangles, by Lemma
7. Then the dual tree T ∗

P is a 3-tree with at most 2k − 2 3-vertices.
We prove that a 3-tree T with at most 2k − 2 3-vertices can be transformed into one with

a perfect matching by at most k applications of either attaching a new single 1-vertex to a
1-vertex, or a triangular expansion of a 3-vertex, by induction on k.

When k = 1, then T has no 3-vertex, by Lemma 7, and hence T is a path. If T is a path
of even order, then it has a perfect matching, while the path with a 1-vertex attached has a
perfect matching if the order of T is odd. Hence we get the first step of induction.

We suppose k > 1, and take a 3-vertex v in T such that at least two components, say P1
and P2, of T − v are a path. Let u be the 3-vertex of T closest to v, and let P3 be the path
consisting of all inner vertices of the path between u and v, as shown in the left of Figure 14.
We have the following four cases depending on the parity of |P1| + |P2| and that of |P3|, as
follows:

Figure 14 Three paths P1, P2 and P3

(1) |P1| + |P2| ≡ 1 (mod 2) and |P3| ≡ 0 (mod 2)
(2) |P1| + |P2| ≡ 1 (mod 2) and |P3| ≡ 1 (mod 2)
(3) |P1| + |P2| ≡ 0 (mod 2) and |P3| ≡ 0 (mod 2)
(4) |P1| + |P2| ≡ 0 (mod 2) and |P3| ≡ 1 (mod 2)

Case (1). The path P1 ∪ {v} ∪ P2 has even order, and P3 has even order. So both of
these paths have a perfect matching.

CGT



9:12 Quadrangulating a Polygon with a Fixed Spirality using Steiner Points

Case (2). The path P1 ∪ {v} ∪ P2 has a perfect matching. Though P3 has odd order, we
can take a perfect matching after adding a single 1-vertex to P3.

Case (3). The path P1 ∪{v}∪P2 has odd order, and so we add a 1-vertex to P1 ∪{v}∪P2
so that the resulting path has even order. On the other hand, P3 has even order. Therefore,
these two paths have a perfect matching.

Case (4). Apply a triangular expansion of v replacing it with a triangle v1v2v3, and join
vi to Pi to obtain the path P ′

i , for i = 1, 2, 3, as shown in the right of Figure 14. Then
P ′

1 ∪ P ′
2 has even order, and so does P ′

3. Hence, these paths have a perfect matching.

In each of the above cases, adding either a single 1-vertex or applying a single triangular
expansion of v, we get two paths of even order from P1 ∪ P2 and P3 respectively. Therefore,
removing them, we get a 3-tree, denoted by T ′, with at most 2k − 4 = 2(k − 1) − 2 3-vertices,
since u is no longer a 3-vertex in T ′. By induction hypothesis, T ′ can be transformed into
one with a perfect matching by at most k − 1 applications of the two operations. Therefore,
by at most k applications in total, T can be transformed into one with a perfect matching.

Consequently, every polygon of spirality k is quadrangulatable with at most k Steiner
points, where we use both inner and outer Steiner points.

On the other hand, consider the polygon Q of spirality k shown in the left of Figure 15,
where the figure is one with k = 6. Then Q has k swollen parts, and the right of Figure 15
shows a partial structure of one of the swollen parts. We can verify that each of those
parts requires either an inner or outer Steiner point, as follows. It is easy to see that the
swollen part is uniquely triangulated, as indicated by the dotted segments of the right figure.
Moreover, in order to quadrangulate this part, we need either an inner Steiner point in
the shaded region in the figure, or an outer Steiner point attached to an edge in the thick
segments in the figure. Since those swollen parts are apart from each other, those shaded
regions have no intersection in the polygon Q, and they share no edge for which an outer
Steiner point might be added. Therefore, we have the conclusion.

Therefore, Q needs at least k Steiner points, and the estimation for the number of Steiner
points in Theorem 6 is best possible. ◀

Figure 15 A polygon Q of spirality k which requires at least k Steiner points

Observe that the polygon P of spirality k shown in Figure 15 has 6k vertices and needs
at least k Steiner points for quadrangulating P . Therefore, we have the following.
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▶ Proposition 10. There exists a polygon P with n vertices which requires at least n
6 inner

and outer Steiner points.

3 Conclusion

In this paper, we consider quadrangulatability of an n-sided polygon P using Steiner points.
Rawaswami et al. [15] gave a bound for the number of Steiner points needed for quadran-
gulating P by using n. They actually gave two theorems, Theorems 2 and 3, using inner
Steiner points and outer Steiner points, respectively.

On the other hand, Nakamoto et al. defined the spirality of a polygon, which describes its
shape and is independent of the number of vertices [8]. Hidaka et al. gave the best possible
bound for the number of inner Steiner points for quadrangulating a polygon P of spirality
k ≥ 1 by using k (Theorem 4).

Our contribution in this paper is to prove the following: For quadrangulating a polygon
P of spirality k ≥ 1,

(1) the number of outer Steiner points is at most 2k − 1, and this estimation is best possible
(Theorem 5).

(2) the number of inner and outer Steiner points is at most k, and this estimation is best
possible (Theorem 6).

In addition to Theorem 4, by proving (1) and (2) in this paper, we have completely solved
the problems for quadrangulatability of a polygon of a fixed spirality by inner Steiner points,
by outer Steiner points, and by inner and outer Steiner points.

Finally we estimate the number of inner and outer Steiner points S for quadrangulating
a polygon of n vertices. By Theorem 2, we have |S| ≤ ⌊ n−2

4 ⌋ for even n. For odd n, adding
a single outer Steiner point, we have S ≤ ⌊ (n+1)−2

4 ⌋ = ⌊ n−1
4 ⌋ by Theorem 2. On the other

hand, there is an n-sided polygon requiring |S| ≥ n
6 , by Proposition 10. Consequently we

have Table 1.

Table 1 The number of Steiner points for quadrangulating a polygon

by the number n of vertices by spirality k

Inner Steiner points ⌊ n−2
4 ⌋ (Rawaswami [15]) 2k − 2 (Hidaka [8])

Outer Steiner points ⌊ n
3 ⌋ (Rawaswami [15]) 2k − 1

Inner and outer ⌊ n
6 ⌋ ≤ ≤ ⌈ n−1

4 ⌉ k
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