
How Packed Is It, Really?
Sariel Har-Peled # Ñ

Department of Computer Science, University of Illinois, 201 N. Goodwin Avenue, Urbana, IL 61801,
USA.

Timothy Zhou #

Department of Computer Science, University of Illinois, 201 N. Goodwin Avenue, Urbana, IL 61801,
USA

Abstract
The congestion of a curve is a measure of how much it zigzags around locally. More precisely, a
curve π is c-packed if the length of the curve lying inside any ball is at most c times the radius of the
ball, and its congestion is the minimum c for which π is c-packed. This paper presents a randomized
42-approximation algorithm for computing the congestion of a curve (or any set of segments in the
plane). It runs in O(n log2 n) time and succeeds with high probability. Although the approximation
factor is large, the running time improves over the previous fastest constant approximation algorithm
[8], which took Õ(n4/3) time. We carefully combine new ideas with known techniques to obtain our
new near-linear time algorithm.

Keywords and phrases curves, congestion, packedness, Fréchet distance, approximation algorithms

Digital Object Identifier 10.57717/cgt.v4i1.65

Related Version https://arxiv.org/abs/2105.10776

Funding Sariel Har-Peled: Work on this paper was partially supported by a NSF AF award CCF-
1907400 and CCF-2317241.
Timothy Zhou: Work on this paper was partially supported by a NSF AF award CCF-1907400.

Acknowledgements Work on this paper was initiated by discussions of the first author with Anne
Driemel. The authors thank the anonymous referees for their detailed and insightful comments that
had significantly improved this work.

1. Introduction

In 2010, Driemel et al. [6] provided a measurement of how “realistic” a curve is (there are
several alternative definitions – see [6] and references therein for details). Formally, a curve π

is c-packed if the total length of π inside any ball is bounded by c times the radius of the ball.
The minimum c for which the curve is c-packed is the congestion of the curve. Intuitively, if
a curve has high congestion, then it zigzags back and forth around some locality. We expect
that many real-world curves do not behave so pathologically – instead, we expect them
to exhibit low congestion. For examples of real world curves, see https://frechet.xyz.
Naturally, if the curve is a tracking of an entity over long enough time, the congestion might
be high (for example, a soccer player movement during a whole game, an airplane path over
a month, etc).

Curves with low congestion lend themselves to efficient algorithms. Notably, they can
be efficiently approximated by simpler curves which nearly preserve Fréchet distances, and
therefore the Fréchet distances between them can be approximated in near-linear time [6].
In general, if the congestion is Ω(n), then computing the Fréchet distance is more difficult.
Indeed, assuming the Strong Exponential Time Hypothesis (SETH), even approximating
Fréchet distance within a constant factor requires quadratic time [5]. The decision version of
the problem is also conjectured to be 3SUM-hard [2]. Note that proving a direct connection
between 3SUM-hardness and SETH is still an open problem [12].

© Sariel Har-Peled and Timothy Zhou
licensed under Creative Commons License CC-BY 4.0

Computing in Geometry and Topology: Volume 4(1); Article 6; pp. 6:1–6:14

mailto:sariel@illinois.edu
https://sarielhp.org.|
https://orcid.org/0000-0003-2638-9635
mailto:z.timothy96@gmail.com
https://orcid.org/0009-0009-1831-4634
https://doi.org/10.57717/cgt.v4i1.65
https://arxiv.org/abs/2105.10776
https://frechet.xyz
https://creativecommons.org/licenses/by/4.0/
https://www.cgt-journal.org/

6:2 How Packed Is It, Really?

We would like to verify that a given curve is indeed c-packed for a low value of c. Some
algorithms for c-packed curves do not require knowing the value of the congestion – rather,
their analyses show that if the curve is c-packed for some small c, then the algorithms run in
near-linear time. However, verifying that curves are c-packed would increase our confidence
that these algorithms are generally applicable. This leads to the question of how quickly
can one estimate or compute the congestion. In this paper, we present a constant-factor
approximation algorithm for the congestion that runs in near-linear time.

Disks and squares are all the same. As far as the congestion is concerned, whether we use
disks/balls or squares/cubes in the definition is the same up to a constant factor (i.e.,

√
2 in

the plane). Thus, in the following, we work usually in settings of using squares, since it is
easier.

Previous work. As mentioned earlier, the concept of c-packedness was introduced in
Driemel et al. [6]. Computing the congestion exactly runs into the issue of minimizing
sums of square roots. As such, an exact algorithm in the standard RAM model is unlikely.
The work of Vigneron [11] provided a (1 + ε)-approximation algorithm which runs in
O

(
(n/ε)d+2 logd+2(n/ε)

)
time. Gudmundsson et al. offered a cubic-time algorithm for

this problem [9]. Aghamolaei et al. [1] gave a (2 + ε)-approximation for the problem of
approximating the congestion of planar curves, but unfortunately their running time seems
to be at least quadratic.

Some of the previous work [9] was also concerned with computing hotspots, which are
small regions in the plane where many segments pass through. Computing regions of high
congestion naturally leads to finding hotspots. However, one usually fixes the resolution of
the desired hotspots (i.e. the radius of the balls being intersected) before searching them.

More recently, Gudmundsson et al. [8] gave a (6 + ε)-approximation to the conges-
tion/packedness of a polygonal curve in Õ(n4/3/ε4) time. As part of their algorithm, they
showed that one can quickly find a set of O(n) squares whose congestions yield a constant
approximation to the congestion of the curve. They also noted that the problem of finding
the congestion of these squares with respect to the segments seems quite similar to the
Hopcroft problem, as discussed below.

The Hopcroft problem. Given a set P of n points in the plane, and a set L of n lines in the
plane, the question is whether there is a point of P that is incident to one of the lines of L.
There is an Ω(n4/3) lower bound for Hopcroft’s problem due to Erickson [7]. As usual, this
lower bound holds only in a restricted model of computation (algebraic decision tree model),
but it is believed to hold in broader models of computation. The belief that this lower bound
is correct (up to maybe some polylog noise) in any reasonable model of computation is quite
important as it provides matching lower bound to the main results known in range searching.

In our language, the Hopcroft problem can be stated as having a set of n segments, and a
set of n (disjoint) squares, and asking for the maximum congestion of the squares in relation
to the segments.

The challenge. If we replace a point by a short segment, then deciding the packedness
for sufficiently small squares centered at these points is equivalent to solving the Hopcroft
problem. Naturally, this reduction of hardness only works if the approximation is quite
small (say < 2-approx). For this reason, Gudmunsson et al. [8] deemed it unlikely that their
approach, “or a similar approach, can lead to a considerably faster algorithm” for computing

S. Har-Peled and T. Zhou 6:3

congestion. Despite this lower bound working only if the approximation constant is small, it
is quite interesting to figure out if one can break this “lower bound” (by providing a worse
approximation).

Our result. Despite this difficulty, we present a randomized O(n log2 n) time algorithm
that provides a constant approximation to the congestion of a set of segments in R2. The
algorithm bypasses the barrier presented by Hopcroft’s problem by observing that, when
computing congestion, the generated instances for the Hopcroft problem have high congestion.
In such scenarios, we do not need to compute the congestion of Ω(n) disjoint squares exactly
(as required by the Hopcroft problem).

Sketch of algorithm. The congestion of a square with respect to a curve π is the total
length of π inside it, divided by its sidelength. Following [8], we reduce the problem of
approximating the congestion of a curve to that of computing the congestion of O(n) squares.
Then we build a “few” quadtrees whose cells approximate these squares, so that it suffices to
compute the congestion of the quadtrees.

We can compute the congestion of a quadtree cell by finding all the segments of the curve
which intersect it, then explicitly computing the total length of the intersections. However,
naively searching for all the segments intersecting each of the squares takes O(n2) time. To
speed things up, we store each segment at some quadtree cell with comparable length. For a
given cell, its short segments are those stored at descendants in the quadtree, and its long
segments are those stored at ancestors. To find the congestion of a cell, we compute the sum
of its long and short congestions – the congestions with respect to all of its long and short
segments, respectively. We can quickly compute the short congestion of a cell by summing
the lengths of short segments in the quadtree bottom-up.

Exactly computing the long congestion is somewhat tricky. Fortunately, approximating
the long congestion only requires counting the maximum number of long segments intersecting
any cell. If every cell intersects only a few long segments, then we can quickly enumerate all
the intersections by searching the quadtree top-down. If there is a cell intersecting many long
segments, then the algorithm performs an exponential search to guess how many intersections
it has. The algorithm quickly verifies its guess by taking a random sample of input segments,
enumerating its intersections with each quadtree cell, and using the counts to estimate the
maximum number of intersections.

Highlight. This work “bends” what was previously believed to be a lower bound on the
running time for approximating congestion (i.e., Ω(n4/3)). While most of the tools we use are
standard, the way we combine them is non-trivial and offers new insights into the problem.

Since we lose constant factors in several places, the resulting approximation factor is quite
bad compared to previous work (i.e., 42 vs. 6). However, our algorithm runs in near-linear
time, which is significantly faster. We find this result surprising, as it bypasses the barrier
formed by the Hopcroft problem mentioned above.

Paper organization. We start in Section 2 by providing some definitions and background.
In Section 3, we reduce the problem of computing the congestion to that of computing
the congestions of a small number of quadtrees. This in turn reduces to the problem of
computing the congestion from long and short segments. The short congestion is handled in
Section 3.3, while the main challenge of approximating the long congestion is addressed in
Section 4, where we approximate the load of the long segments – i.e., the maximum number

CGT

6:4 How Packed Is It, Really?

of long segments intersecting a single cell of the quadtree. In Section 5, we put everything
together. We conclude in Section 6 with a few remarks.

2. Preliminaries

2.1. Standard tools
▶ Definition 1. For a real positive number τ , let Gτ be the grid partitioning the plane
into axis-parallel squares of sidelength τ . Formally, this grid is defined by the mapping
Gτ (x, y) =

(
⌊x/τ⌋ , ⌊y/τ⌋

)
. The number τ is the width or sidelength of Gτ . For integers

i, j, the (i, j)-grid cell is the τ × τ square formed by the set G−1
τ (i, j).

▶ Definition 2. A square is a canonical square if it is contained inside the unit square,
it is a cell in a grid Gw, and w is a power of two. That is, the square corresponds to a
node in the infinite quadtree defined over [0, 1)2. The grid generating a canonical square is a
canonical grid.

2.2. Congestion
▶ Definition 3. Let □ = □(p, r) denote the axis-parallel square in R2 centered at a point
p ∈ R2 with sidelength 2r. The square □ can be interpreted as a ball in the L∞ norm, and
as such, its radius is r.

▶ Definition 4. For a segment s, let ∥s∥ denote the length of s. Similarly, for a set of
segments S, let ∥S∥ =

∑
s∈S ∥s∥ denote the total length of segments in S.

For a square □ = □(p, r), the conflict list of □ (for a set S of segments) is the set of
segments intersecting □, that is

L(□) = {s ∈ S | s ∩ □ ̸= ∅} .

Let

S ⊓ □ = {s ∩ □ | s ∈ L(□)}

be the clipping of the segments of L(□) to □. The congestion of the square □, with respect
to S, is

c(□) = cS(□) = ∥S ⊓ □∥ /r.

The congestion of the set of segments S is c(S) = max
p,r

cS
(
□(p, r)

)
. Given a set of squares

Ξ, its congestion is cS(Ξ) = max□∈Ξ c(□).

▶ Definition 5. For a constant c > 0, a set S of segments in R2 is c-packed if, for any
point p ∈ R2 and any value r > 0, the total length of the segments of S inside a square
□ = □(p, r) is at most cr. That is, the congestion of S is at most c.

Thus, the congestion of S is the minimum c for which S is c-packed. We are interested
in approximating c(S). To this end, we follow Gudmundsson et al. [8], who reduced the
problem to querying the lengths of intersections between the curve and some squares. While
Gudmundsson et al. state their result for a curve, it holds for any set of segments.

▶ Lemma 6 (Lemma 12 in [8]). Given a set S of n segments in the plane, and a parameter
ε ∈ (0, 1), one can compute, in O(n log n + n/ε2) time, a set GS of O(n/ε2) axis-aligned
squares, such that c(S) ≥ cS(GS) ≥ c(S)/(6 + ε).

S. Har-Peled and T. Zhou 6:5

▶ Remark 7. For completeness, we sketch informally an alternative proof for (a weaker version
of) Lemma 6. Let P be the set of endpoints of the segments of S, and construct a (randomly
translated) compressed quadtree T for the points of P . For every node v in T , we add the
square Cv to the set of candidate squares GS , and we also add a few scaled copies, say 2Cv

and 4Cv to GS .
Let □ be the square with maximum congestion c(S). We replace □ by a square □′ ⊇ □

that is centered in one of the endpoints of P , with congestion at least c(S)/2 (the interesting
case is when □ contains no point of P , but then just enlarge it till it does).

We then continue enlarging □′ till it hits another point of P . Let □′′ be the resulting
square. Informally, the loss in congestion is a constant. Now, the center of □′′ and a point
on its boundary both belong to P . With constant probability □′′ is fully contained in a cell
Cv of a node v of the quadtree (or its enlarged copied added explicitly to GS), that is only
a constant factor bigger. Thus, a square in GS provides the desired approximation to the
congestion.

3. The algorithm: The long and short of it

3.1. Reduction to quadtrees
In what follows, let GS be the set of squares computed by Lemma 6 for S (the value of ε

would be specified shortly). To approximate c(S), it suffices to approximate cGS
(S).

Since congestion is invariant under translation and scaling, we might as well assume
that S, GS ⊆ [0, 1/8]2. We can randomly scale both sets by a random number sr ∈ [1, 2],
and shift both sets by a random vector ur ∈ [0, 1/2]2. Let Λ(p) = srp + ur be the resulting
affine mapping. We compute for each square □ ∈ Λ(GS) the smallest canonical square
canon(□) that contains it – conceptually, consider the infinite quadtree, and computing
the lowest node v in the quadtree that its cell contains □ – the square Cv is canon(□).
Algorithmically, canon(□) can be computed in O(1) time using the floor function and some
basic bit operations, see [10]. Next, we build a quadtree that has all these marked canonical
squares as nodes. This can be done in O(n log n) time [10]. The idea is to repeat this process
sufficient number of times, such that in one of the generated quadtrees, canon(□) and □
are almost identical, and this holds for all the squares of interest.

▶ Lemma 8. For a square □̂ ∈ GS , and a parameter ε ∈ (0, 1/2), consider its randomly
scaled and shifted copy □ = sr□̂ + ur, and its canonized version □′ = canon(□).

The probability that r = r(□) ≤ r(□′) ≤ (1 + ε)r is ≥ (ε/8)3.

Proof. By construction □ ⊆ □′. Let ℓ = r(□̂), and let L = 2⌈log2 ℓ⌉ be the rounding up of ℓ

to its closest power of 2. For simplicity of exposition assume that ζ = L/l > (1 + ε) – as
otherwise, one can apply the analysis to 2L/ℓ.

The optimal scaling for our purposes is ζ, but let us be slightly less greedy, and consider
the random scaling sr to be good if sr ∈ [(1 − ε/4)ζ, (1 − ε/8)ζ]. This interval is of length
(ε/8)ζ ≥ ε/8. Thus, the random scaling is good with probability ≥ ε/8, and assume this
happened.

Consider the canonical grid G2L, and r = r(□). We have that 2r ∈ [(1 − ε/4)2L, (1 −
ε/8)2L]. as such, the set of all good translations

U =
{

(x, y) ∈ R2
∣∣∣ (x, y) + sr□̂ contained in a cell of G2L

}
is a grid like set with sidelength 2L, where each grid point is replaced by a square of sidelength
≥ (ε/8)2L. The probability that the random shifting ur falls in U is at least (ε/8)2.

CGT

6:6 How Packed Is It, Really?

If both things happen, then r ≤ L ≤ (1 + ε)(1 − ε/4)L ≤ (1 + ε)r. Namely, □ ⊆ □′, and
r = r(□) ≤ r(□′) ≤ (1 + ε)r, as desired. ◀

▶ Definition 9. For a compressed quadtree T , let Ξ(T) be the set of all squares formed
by nodes of T . The congestion of a quadtree T for a set of segments S is the quantity
cS(T) = cS(Ξ(T)).

▶ Lemma 10. Given a set S of n segments, one can compute, in O(n log2 n) time, m =
O(log n) (shifted) compressed quadtrees, T1, . . . , Tm, such that 1

7c(S) ≤ maxi cS(Ti) ≤ c(S).
This holds with high probability.

Proof. Let ε ∈ (0, 1) be a sufficiently small constant to be specified shortly. Compute the
set GS of squares specified by Lemma 6. Next, compute m = O(ε−3 log n) randomly shifted
copies G1

S , . . . , Gm
S of GS , as described above. For each one of them we compute a compressed

quadtree. Each such compressed quadtree, can be interpreted as a shifted compressed
quadtree over the original set of squares GS . And let T1, . . . , Tm be these quadtrees.

Fix a square □ ∈ GS . By Lemma 8, with probability p ≥ (ε/8)3, there is a node u, and thus
its cell □′, such that □ ⊆ □′ and r(□′) ≤ (1+ε)r(□). Thus, we have cS(□′) ≥ cS(□)/(1+ε).

In particular, the probability that this “good” containment does not happen for □, in
all m quadtrees, is (1 − p)m ≤ 1/nO(1). We conclude that, high probability, for all squares
□ ∈ GS , there is at least one node/square, in the computed quadtrees, that tightly contains
□.

This readily implies that

max
i

cS(Ti) ≥ 1
1 + ε

max
□∈GS

cS(□) ≥ 1
(1 + ε)(6 + ε)c(S) ≥ 1

7c(S),

for ε = 1/10. ◀

▶ Remark 11. Throughout the algorithm, we use compressed quadtrees, rather than regular
quadtrees. The use of compressed quadtrees is necessary to get an efficient runtime, but it
does not affect the description of our algorithm significantly. (Intuitively, the compressed
quadtree compresses paths and not cells, so one can easily ensure that all cells of interest
appear in the compressed quadtree as regular cells). As such, from this point on, we use
quadtree as a shorthand for a compressed quadtree, and we ignore the minor low-level
technical details that arise because of the compression.

Specifically, the only issue in the algorithm where this would make a difference is in
traversing down the tree and assuming that the child is exactly half the size of its parent.
This can easily be fixed by working directly with the node own record of its dimensions.

3.2. First steps towards approximating the congestion of a quadtree
Given a set S of n segments and a quadtree T of size O(n), we wish to compute the congestion
of T . To simplify the exposition, we assume that any shift needed is applied to the input
segments, and the quadtree is thus standard one built over [0, 1]2.

3.2.1. A naïve exact algorithm for the congestion of a quadtree
At each node v ∈ T , the algorithm stores a conflict list L(v) – a list of all the segments of
S intersecting the cell □v associated with v. It begins by storing S at the root of T , then
recursively traverses down the tree. At each parent node u, the algorithm sends the list L(u)
to all its children. Each child v finds all the segments which intersect its cell □v and adds

S. Har-Peled and T. Zhou 6:7

s s

Figure 3.1 Computing a maximal set of α-long segments for a segment s (see Lemma 13). In
this case, the segment has length 5, and each grid cell is of radius 0.5, so the segment is 10-long for
all the cells of the grid it intersects.

them to its own list. At the end of this process, the algorithm has computed the segments
intersecting each quadtree node, and it can use them to compute the congestion. Overall,
this algorithm takes O(n2) time.

3.2.2. The long and the short of it
To speed up the naïve algorithm, we implement several strategies. The first is to register the
segments directly in the cells at a suitable resolution of the quadtree.

▶ Definition 12 (long/short threshold). Let α > 0 be a fixed integer constant, to be specified
shortly1. The parameter α is the transition constant. A segment s is α-long (resp., α-
short) for a square □ = □(p, r) if it intersects the interior of □ and ∥s∥ ≥ αr (resp.,
∥s∥ < αr). For a square □ with radius r, its set of α-long (resp., α-short) segments is
denoted by S≥α(□) (resp., S<α(□)).

▶ Lemma 13. For each segment s ∈ S, let G(s, α) be the set of interior-disjoint canonical
squares of maximal size for which s is α-long. There are at most O(1 + α) such squares, and
they can be computed in O(1 + α) time.

Proof. Let i = ⌊log2(∥s∥ /α)⌋, and τ = 2i. Since

ατ = α2⌊log2(∥s∥/α)⌋ ≤ α · ∥s∥
α

≤ ∥s∥ < α21+⌊log2(∥s∥/α)⌋ < 2ατ,

the segment s intersects at most 2(α + 1) horizontal lines of the grid Gτ . This implies that s

can intersect at most 4(α + 1) + 1 grid cells of Gτ . Computing the grid cells that intersect s

is a classical problem in graphics (i.e., line drawing problem) which can be solved in O(1 + α)
time; see Figure 3.1. ◀

1 Spoiler alert! The butler did it, α = 20, and the hero dies in the end. The hero did try to expose α, but
it was too late for them.

CGT

https://en.wikipedia.org/wiki/Line_drawing_algorithm

6:8 How Packed Is It, Really?

3.2.3. Registering the segments
The refined quadtree T +. Given the set S of n segments and the above quadtree T ,
the algorithm first computes the set of canonical squares Ξ = cells(T) ∪

⋃
s∈S G(s, α); see

Lemma 13. The algorithm then computes the (compressed) quadtree T + for Ξ. This can be
done in O(n log n) time [10], as |S| = n, |cells(T)| = O(n), and |Ξ| = O((1 + α)n) = O(n),
as α is a constant. Each square of Ξ is now present as a cell of a node of the computed
quadtree.

The algorithm now stores every segment s ∈ S in the cells of G(s, α). Each cell □ ∈ G(s, α)
corresponds to a node v in the quadtree, and the algorithm stores s in L(v). This takes
O(n log n) time; see [10]. Thus, for every quadtree node v, the algorithm computes a list
Llong(v) of segments registered there. Segments registered in this list are long for the cell □v

but short for cells in higher levels of the quadtree.
Propagating each segment up to the parent node, we also register each segment in a

list Lshort(v) of another node v (this is done only for one level up). Segments registered in
this list are short for the cell □v but long for cells in lower levels of the quadtree. Since
computing the registering cells for each segment takes O(1) time, computing the lists Lshort(·)
and Llong(·) for all nodes in the tree takes O(n) time, and the lists themselves have total
length O(n).

A segment is registered only once as a short or long segment on any path in the quadtree.

▶ Definition 14. The α-long congestion of □ is c≥α(□) = ∥S≥α(□) ⊓ □∥ /r. Similarly the
α-short congestion of □ is c<α(□) = ||S<α(□) ⊓ □||/r. Given a quadtree T , its α-long
congestion and α-short congestion are

c≥α = c≥α(T) = max
□∈cells(T)

c≥α(□) and c<α = c<α(T) = max
□∈cells(T)

c<α(□).

For a node v ∈ T +, let anc(v) (resp., desc(v)) be the list of ancestors (resp., descendants)
of v in the tree T +. Here (emptily) v ∈ anc(v) and v ∈ desc(v). Consider a node v ∈ T +,
and let □v be its associated square. We have that

S≥α(□v) =
⋃

u∈anc(v)

(Llong(u) ∩ □v) and S<α(□v) =
⋃

u∈desc(v)

Lshort(u).

To summarize, we have described how to augment a quadtree T by adding more cells
and registering short and long segments at the cells, yielding a new quadtree T +. In what
follows, we use this stored information to compute the long and short congestions of T +

(which are at least the congestions of the sub-quadtree T).

3.3. Computing the congestion of the short segments
The α-short congestion is computed using dynamic programming, as described next.

▶ Lemma 15. Given a set S of n segments in the plane and a quadtree T + of size O(n),
one can compute, in O(n) time, the α-short congestion for all the nodes of T +, where α is a
constant.

Proof. We compute the α-short congestion of a quadtree via dynamic programming. The
algorithm finds the total length of short segments intersecting each leaf and propagates the
values upward.

For every node v ∈ T +, the algorithm computes the quantity ∥Lshort(v) ⊓ □v∥. Comput-
ing the value for node v requires time proportional to the total size of the list Lshort(v), so

S. Har-Peled and T. Zhou 6:9

doing it for all the nodes of the tree takes O(n) time overall. Next, the algorithm traverses
the tree bottom-up. For each node along the way, it computes the total lengths of the
intersecting short segments:

∆v =
∑

u∈desc(v)

∥Lshort(u) ⊓ □u∥ = ∥Lshort(v) ⊓ □v∥ +
∑

u child of v

∆u.

It is easy to verify that ∆v = ∥S<α(□v) ⊓ □v∥. The lemma follows. ◀

4. Approximating the maximum load of the long segments in a quadtree

Handling the long congestion quickly seems challenging. Instead, here we would quickly
approximate a proxy for this quantity – the maximum number of such segments visiting a
single node.

▶ Definition 16. The α-load of a quadtree T + is the quantity ρ = max□∈T + |S≥α(□)|.

4.1. A naïve algorithm for computing the α-load
To compute its exact load of a given square, we need to find the long segments intersecting
the cell. We can compute the conflict list for each cell by pushing long segments downward
from the conflict lists of its ancestors (as done in the naïve algorithm of Section 3.2.1).
Unfortunately, these lists can get quite long.

▶ Lemma 17. One can compute the α-load congestion of T + in O(n log n + ρn) time.
More generally, given a set R ⊆ S and a threshold t, one can decide whether ρ(R) =
max□∈T + |R ∩ S≥α(□)| ≤ t, in O(n log n + tn) time.

Proof. The algorithm starts with the precomputed lists Llong(u) and traverses the tree
top-down. At each node, it pushes the stored list down to the children. Each child v selects
the segments of the incoming list that intersect its cell, and takes the union of this filtered
incoming list with Llong(v). This yields the conflict list of v of all α-long segments that
intersect it, denoted by LLONG(v). It then pushes this list down to its children, and so on.

For each node v of the quadtree, it is now straightforward to compute the congestion of
the segments of LLONG(v) (or the length of the list LLONG(v)) for the cell of the node v. It
follows that this computes the α-long congestion for each node of the quadtree. Since the
maximum length of the lists sent down is ρ, the claim follows.

The second algorithm works in a similar fashion, except that the algorithm propagates
downwards only segments of R. If in any point in time the computed conflict list gets bigger
than t, the algorithm bails out, returning that ρ(R) > t. ◀

4.2. From long congestion to load, and back
Instead of computing the α-long congestion of a quadtree exactly, we content ourselves with
a constant-factor approximation, by using the load instead.

▶ Lemma 18. For a cell □ = □(p, r) of T +, we have
c≥α(□)

√
8

≤ |S≥α(□)| ≤ 1 + α

α
c(S).

Proof. The intersection of each segment of S≥α(□) with □ can have length at most
√

2 ·2r =√
8r (as the sidelength of □ is 2r), so c≥α(□) = ∥□ ⊓ S≥α(□)∥ /r, and ∥□ ⊓ S≥α(□)∥ ≤

|S≥α(□)| · r
√

8, and the first inequality follows.

CGT

6:10 How Packed Is It, Really?

As for the second inequality, consider □′ = □(p, (1 + α)r). By definition, each long
segment s ∈ S≥α(□) has length at least αr and intersects □. The length of s ∩ □′ is at least
αr, see Figure 4.1. As such, we have

|S≥α(□)| · αr

(1 + α)r ≤ ∥S≥α(□) ⊓ □′∥
(1 + α)r ≤ c(□′) ≤ c(S). ◀

4.3. Exponential search for maximum α-load

It remains to estimate the load (i.e., maximum number of α-long segments intersecting
any cell in the quadtree T +). The basic idea is to couple random sampling together with
exponential search, to approximate the maximum load. If during a round an “overflow”
occurs, the algorithm increases the guess for the load by (say a factor of 2), and moves on to
the next round. Using sampling and exponential search to estimate a quantity is an old idea.
In the context of geometric settings, it was used before to estimate the maximum depth of
nicely behaved regions, see [3].

4.3.1. The algorithm

Our purpose here is to approximate the α-load of T +, denoted by ρ, see Definition 16.

Estimation via sampling. We perform an exponential search for the size of the largest
conflict list. We use the following standard sampling lemma. It follows by a standard
application of Chernoff’s inequality – see [4, Lemma 2.7] for a proof.

▶ Lemma 19. Consider two (finite) sets B ⊆ S, where n = |S|. Let ξ ∈ (0, 1) and φ ∈ (0, 1/2)
be parameters, and let r =

⌈
c2ξ−2 n

g log φ−1⌉
, where c2 is a sufficiently large constant.

Let g > 0 be a user-provided guess for the size of |B|. Consider a random sample R, taken
from S by picking each element with probability r

n , Next, consider the estimate Y = n
r |R ∩ B|

to |B|. Then, we have the following:

(A) If Y < g/2, then |B| < g,
(B) If Y ≥ g/2, then (1 − ξ)Y ≤ |B| ≤ (1 + ξ)Y .

Both statements above hold with probability ≥ 1 − φ.

□

□′
s

r p

Figure 4.1 An α-long segment for a square □ = □(p, r) intersects the square □′ = □(p, (1 + α)r)
with a segment of length at least αr (here, α = 3).

S. Har-Peled and T. Zhou 6:11

The algorithm. The number of cells in T + is O(n), and let φ = 1/nO(1). Let ε ∈ (0, 1) be
a prespecified approximation parameter, and let ξ = ε/3. At each round, the algorithm has
a threshold number gi and checks whether (i) ρ > 8gi (roughly), or (ii) ρ = Θ(gi) and it can
approximated reliably and quickly. The ith round start, with parameters

gi = 2i−1 and ri = ⌈c2ξ−2 n
gi

log φ−1⌉ . (4.1)

where c2 is a sufficiently large constant. If the ith round failed, the algorithm goes on to the
next round (i.e., by increasing i by one).

Let I be the first integer such that ri < n (i.e., I = Θ(δ−1 log n)), and the algorithm
starts with i = I. This first round, the algorithm uses Lemma 17 directly. If it finds some
conflict list (for S) that contains more than 8gi = 8gI segments at any point during the
execution, it concludes that gi is too small. Thus this round is be a failure, and it goes on to
the next round. Otherwise, the algorithm computes ρ exactly and returns its value.

For later rounds, and larger values of gi, the round begins by taking a random sample
Ri ⊆ S of the segments. Each segment is included in Ri independently with probability
ςi = ri/n (i.e., a random sample according to Lemma 19). The algorithm then calls the
subroutine of Lemma 17 with Ri as the list of segments and with Ui = 8giςi as the threshold.
If the output reveals that ρ(R) > Ui, then the guess gi is too small, the round failed, and
the algorithm continues to the next round.

If a round succeeds (and i ̸= I), the algorithm outputs (1 − ξ)Y for Y = n
ri

ρ(R) as an
estimate from below to ρ.

4.3.2. Analysis
Running time. The first round takes O(n log2 n) time. Since there are only n segments in
S, the algorithm always stops by round O(log n). The threshold used in each round is

Ui = 8giςi = 8giri

n
= O

(gin

nξ2gin
log nO(1)

)
= O

(log n

ε2

)
.

As such, the running time of each round is O(ε−2n log n); see Lemma 17, and the overall
running time is O(ε−2n log2 n).

The result.

▶ Lemma 20. Using the above randomized algorithm, one can compute, in O(ε−2nlog2 n)
time, a number ∆, such that with high probability, we have ∆ ≤ ρ ≤ (1 + ε)∆, where ρ is the
α-load of T +, see Definition 16.

Proof. If the algorithm terminated after the first round, then it output ρ exactly, and we
are done.

Otherwise, if it failed in a round, it must be that it found a node that its conflict list
exceeds the “expected” threshold Ui = 8giςi. Lemma 19 implies that the random sample in
such cases estimates the size of the original conflict list correctly, and it is at least of size
(1 − ξ)Ui > 4gi. Namely, gi is (way) too small, and this decision was made correctly with
probability 1 − 1/nO(1).

If the algorithm succeeded in a round, then Lemma 19 implies that ρ ≤ (1 + ξ)Ui < 16gi.
Since the algorithm failed the previous round, we have that ρ > 4gi−1 ≥ 2gi. Lemma 19
then implies that ρ is (1 ± ξ)-estimated correctly. Specifically, for the jth “heavy” node (i.e.,
conflict list size ρj is larger than gi) in the tree, let Yj be the estimate of its conflict list size.

CGT

6:12 How Packed Is It, Really?

We have that (1 − ξ)Yj ≤ ρj ≤ (1 + ξ)Yj . This inequality clearly holds also on the max value,
which implies that

(1 − ξ)Y ≤ ρ ≤ (1 + ξ)Y =⇒ Y ≤ ρ ≤ 1 + ξ

1 − ξ
Y ≤ (1 + 3ξ)Y = (1 + ε)Y.

An important technicality here is that any of the conflict lists in the tree of size smaller
than gi/2 are too small after the sampling to compete with the conflict list realizing ρ.
Similarly, this also holds for conflict lists of size ≤ gi. Thus, all the conflict lists in play for
realizing the maximum of the sample are estimated correctly2. ◀

5. Approximating the maximum congestion

We seem to have lost our way, so lets try to get back on track. Consider the following
quantity

C≥α(T +) = max
□∈cells(T +)

max
[
c≥α(□), cS≥α(□)

(
(1 + α)□

)]
,

which is the augmented long congestion of T +. We define3

CS
(
T +)

= max
(
c<α(T +), C≥α(T +)

)
.

Clearly, cS(T +)/2 ≤ CS(T +) ≤ c(S).

▶ Lemma 21. We have α
1+α ρ ≤ C≥α(T +) ≤

√
8ρ.

Proof. The upper bound is immediate. The lower bound readily follows from the argument
used in the proof of Lemma 18. ◀

▶ Lemma 22. One can compute, in O(n log2 n) time, a quantity AS(T +), such that
AS(T +) ≤ CS(T +) ≤ 3AS(T +). This holds with high probability.

Proof. let ε = 1/100, and let ∆ be the approximation of ρ computed by the algorithm of
Lemma 20. This takes O(n log2 n) time. We now compute c<α(T +) in O(n log n) time using
the algorithm of Lemma 15. We compute the quantity

AS
(
T +)

= max
(
c<α(T +), α

1 + α
∆

)
.

Clearly, AS(T +) ≤ CS(T +). As for the other direction, observe that
√

8(1 + ε)(1 + α)
α

AS
(
T +)

≥ α

1 + α
∆ ·

√
8(1 + ε)(1 + α)

α
≥

√
8ρ ≥ C≥α(T +),

by Lemma 21. Numerical calculations shows that for ε = 1/100 and α = 20,
√

8(1+ε)(1+α)
α ≤ 3,

which establish the claim. ◀

Finally, we arrive at our main result.

2 So, confusingly, while the winning estimate might not be from the node with the largest conflict list, it
comes from a node with a conflict list of size very close to it – if it was much smaller, it would not have
been able to beat it.

3 Spoiler alert! The hero is still dead, and it turns out that for T1, . . . , Tm the quadtrees of Lemma 10,
maxi C≥α(Ti) is a good approximation to c(S).

S. Har-Peled and T. Zhou 6:13

▶ Theorem 23. Let S be a set of n segments in the plane. One can compute, in O(n log3 n)
time, a 42-approximation to c(S). The algorithm is randomized and succeeds with high
probability.

Proof. Compute, in O(n log2 n) time, the m = O(log n) quadtrees T1, . . . , Tm of Lemma 10.
Each quadtree Ti is refined as described in Section 3.2.3, into a quadtree T +

i , and we
compute for each one of them the quantity ζi = AS

(
T +

i

)
, using the algorithm of Lemma 22

in O(n log2 n) time. Overall, the running time is O(n log3 n), and all the steps so far
succeeded with high probability. The algorithm returns ζ = maxi ζi ≤ c(S) as the desired
approximation to the congestion. For the quality of approximation, observe that

42ζ = 14 max
i

3ζi ≥ 14 max
i

CS
(
T +

i

)
≥ 7 max

i
cS

(
T +

i

)
≥ 7 · 1

7c(S) = c(S). ◀

6. Conclusions

We provided a near-linear time algorithm that computes a constant factor approximation to
the congestion of a polygonal curve (i.e., the minimum c such that the curve is c-packed).
We consider the result to be quite surprising, even though the constant is undesirably large
(i.e., 42).

The new algorithm works verbatim in any constant dimension – our algorithm has not
used planarity in any way. The quality of approximation deteriorates with the dimension d,
but it is still a constant when d is a constant. The running time remains O(n log3 n).

Another important property of the new algorithm is that it does not require the input
segments to form a curve. It is natural to conjecture that in the plane, if the input is a
polygon curve that does not self intersect, then one should be able to (1 + ε)-approximate
the congestion in near linear time. We leave this as an open problem for further research.

As mentioned above, the constant in the approximation quality of the new algorithm is
not pretty (currently 42). Reducing the constant further while keeping the running time
near-linear is an interesting problem for future research.

Nothing in our algorithm is a no-starter from a practical point of view. Performing an
experimental study using this algorithm is an interesting future research.

References
1 Sepideh Aghamolaei, Vahideh Keikha, Mohammad Ghodsi, and Ali Mohades. Windowing

queries using Minkowski sum and their extension to mapreduce. J. Supercomput., April 2020.
doi:10.1007/s11227-020-03299-7.

2 Helmut Alt. Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His
60th Birthday, chapter The Computational Geometry of Comparing Shapes, page 235–248.
Springer-Verlag, 2009.

3 B. Aronov and S. Har-Peled. On approximating the depth and related problems. SIAM J.
Comput., 38(3):899–921, 2008. URL: http://dx.doi.org/10.1137/060669474, doi:10.1137/
060669474.

4 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,
and Makrand Sinha. Edge estimation with independent set oracles. ACM Trans. Algo., 16(4),
September 2020. doi:10.1145/3404867.

5 K. Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless SETH fails. In Proc. 55th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS),
pages 661–670, 2014. doi:10.1109/FOCS.2014.76.

6 A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic curves
in near linear time. Disc. Comput. Geom., 48:94–127, 2012. doi:10.1007/s00454-012-9402-z.

CGT

https://doi.org/10.1007/s11227-020-03299-7
http://dx.doi.org/10.1137/060669474
https://doi.org/10.1137/060669474
https://doi.org/10.1137/060669474
https://doi.org/10.1145/3404867
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1007/s00454-012-9402-z

6:14 How Packed Is It, Really?

7 Jeff Erickson. On the relative complexities of some geometric problems. Proc. 7th Canadian
Conference on Computational Geometry, page 85–90, 1995. URL: http://www.cccg.ca/
proceedings/1995/cccg1995_0014.pdf.

8 Joachim Gudmundsson, Yuan Sha, and Sampson Wong. Approximating the packedness of
polygonal curves. CoRR, abs/2009.07789, 2020. to appear in ISAAC 2020. URL: https:
//arxiv.org/abs/2009.07789, arXiv:2009.07789.

9 Joachim Gudmundsson, Marc van Kreveld, and Frank Staals. Algorithms for hotspot compu-
tation on trajectory data. In Proc. 21st ACM SIG. Int. Conf. Adv. Geo. Info. Sys. (SIGSPA-
TIAL), SIGSPATIAL’13, page 134–143, New York, NY, USA, 2013. Association for Computing
Machinery. doi:10.1145/2525314.2525359.

10 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Math. Surveys & Mono-
graphs. Amer. Math. Soc., Boston, MA, USA, 2011. URL: http://sarielhp.org/book/,
doi:10.1090/surv/173.

11 Antoine Vigneron. Geometric optimization and sums of algebraic functions. ACM Trans.
Algo., 10(1), January 2014. doi:10.1145/2532647.

12 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Thore Husfeldt
and Iyad A. Kanj, editors, 10th Int. Symp. Param. Exact Comput, IPEC, volume 43 of LIPIcs,
pages 17–29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.
IPEC.2015.17.

http://www.cccg.ca/proceedings/1995/cccg1995_0014.pdf
http://www.cccg.ca/proceedings/1995/cccg1995_0014.pdf
https://arxiv.org/abs/2009.07789
https://arxiv.org/abs/2009.07789
https://arxiv.org/abs/2009.07789
https://doi.org/10.1145/2525314.2525359
http://sarielhp.org/book/
https://doi.org/10.1090/surv/173
https://doi.org/10.1145/2532647
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.4230/LIPIcs.IPEC.2015.17

	1 Introduction
	2 Preliminaries
	2.1 Standard tools
	2.2 Congestion

	3 The algorithm: The long and short of it
	3.1 Reduction to quadtrees
	3.2 First steps towards approximating the congestion of a quadtree
	3.2.1 A naïve exact algorithm for the congestion of a quadtree
	3.2.2 The long and the short of it
	3.2.3 Registering the segments

	3.3 Computing the congestion of the short segments

	4 Approximating the maximum load of the long segments in a quadtree
	4.1 A naïve algorithm for computing the tr-load
	4.2 From long congestion to load, and back
	4.3 Exponential search for maximum alpha-load
	4.3.1 The algorithm
	4.3.2 Analysis

	5 Approximating the maximum congestion
	6 Conclusions

