An Improved Algorithm for Shortest Paths in
Weighted Unit-Disk Graphs*

Bruce W. Brewer &
Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Haitao Wang &
Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA

—— Abstract

Let V be a set of n points in the plane. The unit-disk graph G = (V, E)) has vertex set V and an
edge e, € E between vertices u,v € V if the Euclidean distance between u and v is at most 1. The
weight of each edge ey, is the Euclidean distance between u and v. Given V' and a source point
s € V, we consider the problem of computing shortest paths in G from s to all other vertices. The
previously best algorithm for this problem runs in O(nlog?® n) time [Wang and Xue, SoCG’19]. The
problem has an Q(nlogn) lower bound under the algebraic decision tree model. In this paper, we
present an improved algorithm of O(nlog®n/loglogn) time (under the standard real-RAM model).
Furthermore, we show that the problem can be solved using O(nlogn) comparisons under the
algebraic decision tree model, matching the Q(nlogn) lower bound.

Keywords and phrases Unit-disk graphs, shortest paths, dynamic nearest neighbor search, additively-
weighted Voronoi diagrams

Digital Object Identifier 10.57717/cgt.v5i2.69

Funding This research was supported in part by NSF under Grant CCF-2300356.

1 Introduction

Let V be a set of n points in the plane. The unit-disk graph G = (V, E) has vertex set V

and an edge e,, € F between vertices u,v € V if the Euclidean distance between u and v
1
2
centered at the points in V' (i.e., two disks have an edge in the graph if they intersect). In

the weighted graph, the weight of each edge e,, € E is the Euclidean distance between u and
v. In the unweighted graph, all edges have the same weight.

Given V and a source point s € V, we study the single source shortest path (SSSP)
problem where the goal is to compute shortest paths from s to all other vertices in G. Like

is at most 1. Alternatively, G can be seen as the intersection graph of disks with radius

in general graphs, the algorithm usually returns a shortest path tree rooted at s. The
problem in the unweighted graph has an Q(nlogn) lower bound in the algebraic decision
tree model since even deciding if G is connected requires that much time by a reduction
from the max-gap [3]. The unweighted problem has been solved optimally in O(nlogn) time
by Cabello and Jejéic¢ [3], or in O(n) time by Chan and Skrepetos [5] if the points of V' are
pre-sorted (by both the 2- and y-coordinates). Several algorithms for the weighted case are
also known [3, 9, 12, 14, 16]. Roditty and Segal [14] first solved the problem in (n*/3+9)
time, where ¢ > 0 is an arbitrarily small constant. Cabello and Jejéi¢ [3] improved it to
O(n'*?) time. Subsequent improvements were made by Kaplan, Mulzer, Roditty, Seiferth,
and Sharir [9] and also by Liu [12] by developing more efficient dynamic bichromatic closest
pair data structures and plugging them into the algorithm of [3]. Both algorithms are
randomized, and specifically, the algorithm of [9] takes roughly O(nlog” n) expected time

* A preliminary version of this paper appeared in Proceedings of the 36th Canadian Conference on
Computational Geometry (CCCG 2024) [2].

© Bruce W. Brewer, Haitao Wang
37 licensed under Creative Commons License CC-BY 4.0 v

Computing in Geometry and Topology: Volume 5(2); Article 2; pp. 2:1-2:14

mailto:bruce.brewer@utah.edu
https://orcid.org/0009-0008-2995-148X
mailto:haitao.wang@utah.edu
https://orcid.org/0000-0001-8134-7409
https://doi.org/10.57717/cgt.v5i2.69
https://creativecommons.org/licenses/by/4.0/
https://www.cgt-journal.org/

2:2

An Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs

and the algorithm of [12] runs in O(nlog® n) expected time. Wang and Xue [16] proposed a
new method that solves the problem in O(nlog2 n) deterministic time without using dynamic
bichromatic closest pair data structures. It is currently the best algorithm for the problem.

1.1 Our result

We present a new algorithm of O(nlog? n/loglogn) time for the weighted case and, therefore,
slightly improve the result of [16]. Our algorithm follows the framework of Wang and Xue [16]
but provides a more efficient solution to a bottleneck subproblem in their algorithm, called
the offline insertion-only additively-weighted nearest neighbor problem with a separating line
(or IOAWNN-SL for short). Specifically, we are given a sequence of n operations of the
following two types: (1) Insertion: Insert a weighted point to P (which is (} initially); (2)
Query: given a query point ¢, find the additively-weighted nearest neighbor of ¢ in P, where
the distance between ¢ to any point p € P is defined to be their Euclidean distance plus the
weight of p. The points of P and all the query points are required to be separated by a given
line (say the z-axis). The goal of the problem is to answer all queries.

Wang and Xue [16] solved the IOAWNN-SL problem in O(nlog®n) time using the
traditional logarithmic method of Bentley [1]. This is the bottleneck of their overall shortest
path algorithm; all other parts of the algorithm take O(nlogn) time. We derive a more
efficient algorithm that solves IOAWNN-SL in O(nlog® n/loglogn) time (see Theorem 1 for
details). Plugging this result into the algorithm framework of Wang and Xue [16] solves the
shortest path problem in O(nlog®n/loglogn) time.

» Theorem 1. Let P be an initially empty set of n weighted points in the plane such that
all points of P lie below the x-axis L. There exists a data structure D(P) of O(n) space
supporting the following operations:

1. Insertion: Insert a weighted point p below £ to P in amortized O(log®n/loglogn) time.

2. Query: Given a query point q above £, find the additively-weighted nearest neighbor to q
in P in worst-case O(log® n/loglogn) time.

Our algorithm for Theorem 1 needs to solve a subproblem about merging two additively-
weighted Voronoi diagrams. Specifically, let S, and S, each be a subset of n weighted points
in the plane such that all points of S, U S, are below the z-axis ¢. Let VD(S,) denote the
additively-weighted Voronoi diagram of S,, and VD (S,) denote the portion of VD(S,) above
£. Similarly, define VD(S}) and VD (Sy) for Sy, and define VD(S, U Sy) and VD, (S, U S,) for
Sa U Sp. Given VD, (S,) and VD4 (S), our problem is to compute VD4 (S, U Sp). We solve
the problem in O(n) time by modifying Kirkpatrick’s algorithm for merging two standard
Voronoi diagrams [10] and by making use of the property that VD, (S, U S,) and all points
of S, U Sy are separated by £. Note that directly applying Kirkpatrick’s algorithm does not
work (see Section 3 for more details). It would be more interesting to have a linear time
algorithm to compute the complete diagram VD(S, U S,) by merging VD(S,) and VD(Ss).
Our technique, however, does not immediately work because it relies on the separating line /4.
Nevertheless, we hope our result will serve as a stepping stone towards achieving that goal.
We summarize our result in the following theorem.

» Theorem 2. Let S, and Sy each be a set of n weighted points in the plane such that all
the points of S, U Sy are below the x-axis €. Given VD1(S,) and VD4 (Sp), VD1 (S, U Sp) can
be constructed in O(n) time.

B.W. Brewer and H. Wang

Figure 1 Illustrating O, (the central highlighted square) and B, (the gray area).

Algebraic decision tree model. The above result holds for the standard real-RAM model.

Under the algebraic decision tree model in which we only count comparisons toward the
time complexity, using a technique recently developed by Chan and Zheng [6], we show that
the problem IOAWNN-SL can be solved using O(nlogn) comparisons. This leads to an
O(nlogn) time algorithm for the shortest path problem in weighted unit-disk graphs under
the algebraic decision tree model, matching the Q(nlogn) lower bound [3].

Outline. The rest of the paper is organized as follows. We describe the shortest path
algorithm framework in Section 2, mainly by reviewing Wang and Xue’s algorithm [16]. In

Section 3, we introduce our data structure for IOAWNN-SL and thus prove Theorem 1.

Section 4 presents our Voronoi diagram merging algorithm for Theorem 2. The algebraic
decision tree algorithm is described in Section 5. Section 6 concludes.

2 The shortest path algorithm

In this section, we describe the shortest path algorithm. We begin with reviewing Wang and
Xue’s algorithm [16] and explain why the IOAWNN-SL problem is a bottleneck (we only
state their algorithm and refer the interested reader to their paper [16] for the correctness
analysis). We will show how our solution to IOAWNN-SL in Theorem 1 can lead to an
O(n logZn /loglogn) time algorithm for the shortest path problem.

Given a set V of n points in R? and a source point s € V, we wish to compute shortest
paths from s to all vertices in the weighted unit-disk graph G = (V, E)). We use e,, € F to

denote the edge between two points u,v € V and w(e,,) to denote the weight of the edge.

Recall that w(ey,) = ||u —v|| < 1, where ||u — v|| denotes the Euclidean distance between
uw and v. The algorithm will compute a table dist[-] such that after the algorithm finishes,
dist[v] is the length of a shortest path from s to v for all v € V. Using a predecessor table,
we could also maintain a shortest path tree, but we will omit the discussion about it.

We overlay the plane with a grid T' of square cells with side lengths 1/2. For any point
a € R?, denote by O, the cell of T such that a € O,, and B, the 5 x 5 patch of cells
in T centered around [J, (see Figure 1). For a set of points A C R? and a € A, we use
Ap, = An0, and Ag, = ANH,. The algorithm makes use of the following properties: (1)
For any two points a,b in the same cell of T, ||a — b|| < 1 holds; (2) if [|a — b|| < 1, then b is
in HH, and «a is in H.

Wang and Xue’s algorithm is summarized in Algorithm 1. It can be understood by

contrasting with Dijkstra’s algorithm, which we write in Algorithm 2 using similar notation.

In particular, a subroutine UPDATE(A, B) is used to “push” the current candidate shortest

2:3

CGT

2:4

An Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs

path information from A to B where A, B C V. Specifically, for each point b € B, we find:

pp = argmin dist[a] + w(eqp). (1)
{a€A:eq, €E}

We then update dist[b] to min{dist[b], dist[ps] + w(ep,p)}-

Algorithm 1 Wang and Xue’s algorithm [16]

dist[a] - oo for all a € V

dist[s] « 0

AV

while A # () do
¢ < argmin, 4 {dist[a]}
UPDATE(Am,, An,) // First Update
UPDATE(AQ,, Am,) // Second Update
A+ A\ Ap,

return dist[]

© 0 N o A W N =

Algorithm 2 Dijkstra’s algorithm

dist[a] < oo for all a € V
dist[s] <+ 0
A=V
while A # () do
¢ < argmin, ¢ ,{dist[a]}
UPDATE({c}, A)
A+ A\ {c}
return dist[]

o 9 o ok W N =

The main difference between Wang and Xue’s algorithm and Dijkstra’s is that instead of
operating on single vertices, Wang and Xue’s algorithm operates on cells of I'. Generally
speaking, the first update (Line 6) in Algorithm 1 is to update the shortest path information
for the points in Ap, using the shortest path information of their neighbors. The second
update is to use the shortest path information for the points in Vg, to update the shortest
path information of their neighbors. Wang and Xue prove that after the first update, the
shortest path information for all points of Vo, is correctly computed.

Wang and Xue give an O(n log? n) time solution for the second update, i.e., Line 7. The
rest of Algorithm 1 takes O(nlogn) time. We will improve the runtime for the second update
to O(nlog®n/loglogn) using Theorem 1, which improves the runtime for Algorithm 1 to
O(nlog®n/loglogn). The details are discussed in the following.

2.1 The second update

To implement the second update UPDATE(An,, Am.), since Ag_ has O(1) cells, it suffices to
perform UPDATE(An_, Ag) for each cell O € B, individually.

If O is O, then Ag, = Ap. Since the distance between two points in [, is at most 1,
UPDATE(AQ,, Ag) can be performed in O(|Ag, |log|Aq,|) time (and O(|An,|) space) by
constructing the additively-weighted Voronoi diagram for An_ [8].

B.W. Brewer and H. Wang

If O is not ., a useful property is that [J and [J. are separated by an axis-parallel line.
To perform UPDATE(AQ_, Ag), Wang and Xue [16] proposed Algorithm 3 below.

Algorithm 3 UPpPDATE(A, B) from [16]

1 dist’[a] « dist[a] for a € A
2 Sort the points in A = {ay,..., a4} so that dist'[a;] < ... < dist’[aj4]
3 fori=1,...,|4| do
| Bi+{b€B:eg € Eande,y ¢ E forall j <i}
U«
for i =|A|,...,1do
U+~UuU {ai}
for b € B; do
p = arg min, ¢ {dist’[u] + w(eu)}
dist[b] + min{dist[b], dist’[p] + w(ep)}

© ® N O o A

o
(=]

The correctness of Algorithm 3 hinges on the fact that p found by Line 9 is the same as
pp in Equation (1). This is seen by arguing that p, € U and ey, € E.

We now analyze the runtime of Algorithm 3. Sorting A takes O(]|A|log|A|) time. Com-
puting the subsets B;, 1 < i < |A|, can be done in O((JA| + |B]) log(|A| + |B|)) time (and
O(|A|+|B|) space) [16]. The for loop (Lines 6-10) is an instance of the IOAWNN-SL problem
introduced in Section 1. Indeed, if we assign each point u in U a weight equal to dist’[u],
then p in Line 9 is essentially the additively-weighted nearest neighbor of b in U. The set
U is dynamically changed with point insertions in Line 7. As such, by Theorem 1, the for
loop can be implemented in O(klog® k/loglog k) time (and O(k) space) with k = |A| + |B].
Therefore, UPDATE(AQ,, Ag) can be performed in O(k log® k/ log log k) time and O(k) space,
with k = |A|:|C| + ‘AD|

In summary, since Ag, has O(1) cells, the second update UPDATE(AQ_, Am,) can be
implemented in O(|Ag, |log? |Am, |/ loglog |Am.|) time and O(|Am,|) space as Ag. C Ag, .
As analyzed in [16], the total sum of |Ag_| in the entire Algorithm 1 is O(n). This leads to
the following result.

» Theorem 3. Given a set V of n points in the plane and a source point s, shortest paths
from s to all other vertices in the weighted unit-disk graph G = (V, E) can be computed in
O(nlog®n/loglogn) time and O(n) space.

3 The offline insertion-only additively-weighted nearest neighbor
problem with a separating line (IOAWNN-SL)

In this section, we prove Theorem 1. We follow the notation in Section 1. In particular, for
any subset P’ C P, VD, (P’) denotes the portion of the additively-weighted Voronoi diagram
of P’ above the z-axis /.

Our data structure D(P) for Theorem 1 consists of two components: D(P’) and VD (P \
P’) for some subset P’ C P; we maintain the invariant |P’| < |P|/log|P|. We also build
a point location data structure on VD4 (P \ P’) so that, given a query point, the cell of
VD, (P\ P’) containing the point can be found in O(log | P\ P’|) time [7, 11]. As such, D(P)
is a recursive structure: D(P) is defined in terms of D(P’) which in turn is defined in terms
of D(P") and so on. As the base case, if |P| < ¢ for some constant ¢, then we simply let

CGT

2:5

2:6

An Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs

D(P) = VD, (P). Similar recursive data structures have been used before in the literature,
e.g., [4, 13].

In the following, we discuss how to handle the two operations: insertions and queries.

Queries. Given a query point g above ¢, the query is to find the (weighted) nearest neighbor
of ¢ in P, denoted by p,. Note that searching for p, is a decomposable searching problem: If
p}l is the nearest neighbor of ¢ in P’ and pg is the nearest neighbor of ¢ in P\ P’, then p, is
whichever of ptll and pz is nearer to ¢g. We can find p}] by recursively querying D(P’). We can
find p? using a point location in VD (P \ P’).

For the time analysis, let Q(n) denote the runtime of this query algorithm. By the invariant,
|P’'| <|P|/log|P| holds, and therefore computing p} takes Q(n/logn) time. Finding p? with
point location can be done O(log |P \ P’|) = O(logn) time. Therefore, we have the following
recurrence: Q(n) = Q(n/logn) + O(logn). This solves to Q(n) = O(log®n/loglogn). As
such, each query operation takes worst-case O(log2 n/loglogn) time.

Insertions. For insertion, we are to insert a point p below ¢ to P. Recall that our data
structure D(P) consists of two parts: D(P’) and VD, (P \ P’). We start by inserting p
into P’. This involves a recursive insertion call to D(P’). Second, we check if the invariant
|P'| < |P|/log|P]| still holds. If it holds, then we are done. Otherwise, we set P’ = (). This
means that we must compute VD, (P) and a point location data structure for it. We do
this as follows. Before setting P’ = (), P’ contains p and we have VD, (P \ P’) available.
First, we construct VD, (P’) recursively. Then, we compute VD4 (P) by merging VD, (P’)
and VD, (P \ P’). Finally, we compute a point location data structure for VD (P).

For the time analysis, let T'(n) denote the time to construct VD, (P) and a point location
data structure for it. By the invariant, constructing VD, (P’) takes T'(n/logn) time. By
Theorem 2, merging VD4 (P’) and VD4 (P \ P’) takes O(n) time. Computing a point location
data structure for VD, (P) can be done in O(n) time [7, 11]. Therefore, we have the following
recurrence: T'(n) = T'(n/logn) + O(n). This solves to T'(n) = O(n).

Let I(n) be amortized time it takes to perform an insertion. By the invariant, the
recursive call to D(P’) for inserting p into P’ takes I(n/logn) time. Because we set P’ = ()
once VD, (P) is constructed, we only need to construct VD (P) every ©(n/logn) insertions.
Because constructing VD (P) takes O(n) time, the amortized time for constructing VD, (P)
per insertion is O(logn). Therefore, we have I(n) = I(n/logn) + O(logn). This solves
to I(n) = O(log®n/loglogn). We conclude that each insertion takes O(log®n/loglogn)
amortized time.

Space. Let S(n) be the space of D(P). By the invariant, D(P’) takes S(n/logn) space. The
size of VD (P\ P’) is O(|P\ P'|) = O(n) [8] and the space of the point location data structure
for it is the same [7, 11]. Therefore, the recurrence for S(n) is S(n) = S(n/logn) + O(n).
This solves to S(n) = O(n). This concludes the proof of Theorem 1.

4 Merging two additively-weighted Voronoi diagrams

In this section, we prove Theorem 2. For completeness, we first introduce the formal definition
of additively-weighted Voronoi diagrams and then present our merging algorithm.

B.W. Brewer and H. Wang

—0.6

T T
—0.6 —-0.4 —0.2 0.0 0.2 0.4 0.6 0.8 10

Figure 2 Illustrating an additively-weighted Voronoi diagram. The dashed horizontal line is the
x-axis £.

4.1 Additively-weighted Voronoi diagrams

Let S = {s1,52,...,8,} be a set of n points in the plane such that each point s; has a weight
w; that can be positive, zero, or negative. Following the literature, we refer to points of S as
sites. We define the additively-weighted Euclidean distance (or weighted distance for short)
of a point p € R? to a site s; as d(s;,p) = ||s; — pl| + w;.

The additively-weighted Voronoi diagram of S, denoted by VD(S), partitions the plane
into Voronoi regions, Voronoi edges, and Voronoi vertices; see Figure 2. Each Voronoi region
R; is associated with a site s; and is defined to be the set of points that are closer to s; than
to any other site measured by the weighted distances:

Ri={pe R2: d(si,p) < d(s;,p),Vj #i}.

Each Voronoi edge E;; is associated with two distinct sites s; and s; and is defined to be
the set of points that are equidistant to s; and s; and closer to these sites than any other
sites:

Eij = {p € R2 : d(siyp) = d(8j7p) < d(sk,p),Vk 7é 7/73}

Each Voronoi vertex is associated with three or more distinct sites and is defined to be
the point that is equidistant to these sites and closer to these sites than any other site.

We will also talk about the bisector between two sites, which is defined to be the set of
points in the plane that are equidistant to the two sites:

B(si,s;) = {p € R? : d(s;,p) = d(s;,p)}.

B(s;,s;) is a hyperbolic arc whose foci are s; and s;. Note that a Voronoi edge associated
with two sites is a subset of their bisector.

Observation 4 states some properties about VD(S) that are well known in the literature;
we will use these properties in our algorithm.

Observation 4. ([8])

Every Voronoi region of VD(S) must contain its associated site.

2. Each Voronoi region R; of VD(S) is star-shaped with respect to its site s;, that is, the
line segment $;p is inside R; for any point p € R;.

3. The combinatorial size of VD(S) is O(]S]).

=V

CGT

2:7

2:8

An Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs

1.0

0.8

0.6

0.4

0.2

0.0

—0.2 4

—0.4

-0.6 T T T T T T T
—0.6 —0.4 —-0.2 0.0 0.2 0.4 0.6 0.8 10

Figure 3 Illustrating the contour between two sets of points. The dashed horizontal line is the
x-axis £.

4.2 Merging algorithm for Theorem 2

We follow the notation introduced in Section 1, e.g., £, n, Sy, Sy, VD(S,), VD(Sp), VD1 (Sa),
VD, (Sp), etc. Let S = S,USy. Given VD, (S,) and VD (Sp), our goal is to compute VD (.5)
in O(n) time. For ease of exposition, we make a general position assumption that no point
in the plane is equidistant to four points of S.

Our strategy is to identify the contour which consists of edges in the complete Voronoi
diagram VD(S) that are associated with a site in S, and a site in Sp; see Figure 3. Note
that the contour may have multiple connected components. The contour partitions the
plane into regions C'R; such that VD(S) N CR; is either VD(S,) N CR; or VD(S,) N CR;
(we show in Lemma 6 later that each contour component has the topology of a line or a
circle). As such, once we have identified the contour, computing VD(S) is straightforward.
To compute the contour, the idea is to first find a point on each contour component and
then trace the component by traversing VD(S,) and VD(S}) simultaneously. This strategy
follows Kirkpatrick’s algorithm [10] for merging two standard Voronoi diagrams. However,
we cannot directly apply Kirkpatrick’s algorithm because his method for finding a point in
each contour component is not applicable to the weighted case. More specifically, his method
relies on the property that the Euclidean minimum spanning tree of a point set in the plane
must be a subgraph of the dual graph of its standard Voronoi diagram. However, this is
not true anymore for the additively-weighted Voronoi diagrams. We make it formally as an
observation below.

» Observation 5. The FEuclidean minimum spanning tree of a set of points in the plane is
not necessarily a subgraph of the dual graph of the additively-weighted Voronoi diagram of
the point set.

Proof. Figure 4 gives an example for the observation with S = {p1,p2,p3,p4}. It is obtained
by setting p1 = (0,12), p2 = (5,0), ps = (0, —12), and ps = (—5,0) with weights w; = —10,
wg = 0, wg = —10, and wy = 0. We find that the unweighted distances are d(p1,p2) =
d(p1,ps) = d(ps,p2) = d(p3,ps) = 13, d(p1, p3s) = 24, and d(p2, ps) = 10. Since (p2, ps) is the
closest pair among the four points of S, paps must be an edge in the Euclidean minimum
spanning tree of S. However, there is no edge between p; and p, in the dual graph of the
additively-weighted Voronoi diagram of S because their Voronoi regions are not adjacent. <«

B.W. Brewer and H. Wang

15
P1
°
10 1
5 —

—10

_15 T T T T T
-15 -10 -5 0 5 10 15

Figure 4 Tllustrating the additively-weighted Voronoi diagram of four points {p1, p2,p3, pa} for
Observation 5.

In our problem, we are interested in merging VD, (S,) and VD, (Sy) into VD4 (5), so it
suffices to compute the portions of the contour above £. With the help of ¢, it is relatively
easy to find a point on each contour component using the following property proved in
Lemma 7: Every contour component above ¢ must intersect ¢.

At a high level, our algorithm has two main procedures. The first one is to identify
the intersections between the contour and ¢. The second procedure is to start at these
intersection points and trace each component of the contour above /.

The first main procedure: Finding intersections between the contour and £. By definition,
¢ is divided into segments by its intersections with VD, (S,,), which we call £-edges of VD (S,);
similarly, we define ¢-edges for VD, (S,). We sweep £ from left to right, looking for places
where the contour intersects £. We start with the leftmost ¢-edge of VD (S,) and the leftmost
l-edge of VD4 (S,). At each step, we are on some f-edge e, of VD, (S,) and some f-edge e}, of
VD, (Sy). Let s, € S, be the site associated with the cell of VD (S,) containing e,; define
sp € Sp similarly. We compute the bisector B(s,,sp) and determine where it intersects /.
The bisector is a hyperbolic arc and ¢ is a straight line, so they have at most two intersections
p1 and po. If p; € e, Ney, then p; is a point of intersection between the contour and ¢. In this
way, we can compute all intersections between ¢ and the contour. Since the combinatorial
sizes of VD1 (S,) and VD, (Sp) are O(n), this procedure computes O(n) intersections between
¢ and the contour in O(n) time.

The second main procedure: Tracing the contour. We trace the contour components
from the intersection points computed above. Specifically, for each intersection p, we trace
the contour component containing p as follows. Suppose that p is on an f-edge e, of VD (S,)
and an f-edge e, of £ in VD, (Sp). These edges are associated with sites s, € S, and s, € S.
Our trace begins at p and continues above ¢ along the bisector B(s,, sp). This bisector enters
a Voronoi region R, of VD, (S,) and a region R;, of VD, (Sy). We find which edge of R,
or Ry the bisector intersects first. If no intersection exists or the bisector first intersects £,

2:9

CGT

2:10

An Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs

1.0

0.8

0.6

0.4

0.2

0.0

—0.2 4

—0.4

-0.6 T T T L . ? :
-06 —0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5 The dotted segments are spokes. Our algorithm only uses the portions of these spokes
above £, the dashed line.

then we finish the trace by reporting that the portion of B(s,, sp) past p is an edge of the
contour. Otherwise, assume that we intersect an edge e/, of R, before an edge of R} (the
case where we intersect an edge of R}, first is handled the same way) and denote this point
of intersection by p’. We rule out the case where B(s,, sp) intersects a vertex instead of an
edge because if we were to intersect a vertex, this vertex would be equidistant to three sites
in S, and one site in Sy, which would contradict our general position assumption that no
point is equidistant to four sites of S = S, U S,. We report that the portion of B(s,, sp)
between p and p’ is an edge of the contour. Then, we rename R, to be the Voronoi region of
VD, (S,) on the other side of e/, and update p < p’. We then continue the tracing from p
following the same process as above.

Our tracing algorithm is similar to the well-known algorithm for merging the standard
Voronoi diagrams of two sets of points separated by a line [15]. One difficulty with our
algorithm is efficiently determining which edges of R, and R}, the contour intersects first.
This may not be a constant time operation since R, and R, may have many edges. The
merge algorithm by Shamos and Hoey [15] takes advantage of the fact that the contour in
their problem is monotone so that they can find all contour edges in a region by a single
scan of the boundary of that region. In our problem, the contour may not be monotone. To
resolve the issue, we follow the same technique used by Kirkpatrick [10] for merging standard
Voronoi diagrams of two arbitrary sets of points. Specifically, before our tracing algorithm,
we subdivide Voronoi regions of VD, (S,) and VD4 (Sp) each into sub-regions of at most four
edges by drawing segments between each site and each vertex of the Voronoi region of the site
(see Figure 5; we can do this because each Voronoi region is star-shaped by Observation 4);
as in [10], we refer to these segments as spokes. Because each sub-region only has at most
four edges, finding where a bisector intersects a sub-region can be done in O(1) time. We
then apply our above tracing algorithm using these subdivisions of VD (S,) and VD (Ss).
Each tracing step now finds an intersection between the contour and either a spoke or a
Voronoi edge in constant time. As such, the total time of the tracing procedure is linear in
the number of such intersections. By Lemma 8, the number of such intersections, and hence
the runtime of the tracing procedure, is O(n). Therefore, the total time of the algorithm for
merging VD, (S,) and VD, (Sp) is O(n). This proves Theorem 2.

B.W. Brewer and H. Wang

4.3 Useful lemmas

It remains to prove Lemmas 6, 7 and 8, which our algorithm relies on.

Recall that the contour also includes its portions below ¢, i.e., it is defined with respect
to the complete Voronoi diagram VD(S). We first have the following lemma, which is also
needed in the proof of Lemma 7; a similar result on the standard Voronoi diagrams is already
used in [10].

» Lemma 6. Each contour component never terminates or splits; that is, it has the topology
of an infinite line or a circle.

Proof. A contour component is made up of edges in VD(S), so if it were to terminate or
split, it would be at a Voronoi vertex of VD(.S). Due to our general position assumption that
no point is equidistant to four sites, each Voronoi vertex in VD(S) is adjacent to three sites
in S. If the contour hits a Voronoi vertex v, then at least one of these sites must be in S,
and at least one must be in S. Without loss of generality, let these sites be s, so, and s3
with s1,s9 € S, and s3 € S,. The Voronoi edge between s; and s3 and the Voronoi edge
between s, and s3 will be on the contour, so the contour will not terminate at v. The edge
between s; and ss will not be on the contour, so the contour will not split at v. |

» Lemma 7. If a contour component contains a point above £, then the contour component
must intersect £.

Proof. Lemma 6 establishes that a contour component divides the plane into two regions,
called contour regions. Notice that because a contour component is made up of edges in
VD(S), each contour region must contain at least one Voronoi region of VD(S) and thus
contains at least one site of S by Observation 4.

Now assume to the contrary that a contour component C' contains a point above ¢ but
C does not intersect ¢. Then, the entire C is above £. As such, one of the contour regions
divided by C' must be entirely in the halfplane above ¢; let R be the region. This implies
that the sites of S contained in R must be above £, but this contradicts the fact that all sites
of S are below /. |

» Lemma 8. 1. The total number of intersections between the contour and the Voronoi
edges of the complete Voronoi diagrams VD(S,) and VD(Sp) is at most O(n).

2. The total number of intersections between the contour and the spokes of the complete
Voronoi diagrams VD(S,) and VD(Sy) is at most O(n).

Proof. We adapt the proof from [10] for a similar lemma on standard Voronoi diagrams.

Notice that the intersection between the contour and a Voronoi edge in VD(S,) or VD(S5)
is a vertex in VD(S). There are O(n) vertices in VD(S), so the total number of intersections
between the contour and the Voronoi edges of VD(S,) and VD(S,) is at most O(n). This
proves the first lemma statement.

To prove the second lemma statement, we show that the contour can intersect each spoke
at most once. We exploit the fact that Voronoi regions are star-shaped (Observation 4). If
the contour intersects a spoke of the Voronoi region for site s in VD(S,) or VD(S), then the
open segment between s and this intersection will lie in the Voronoi region of s in VD(.5).
Because this segment is in the Voronoi region for s in VD(S), the contour cannot intersect
this segment.

Now, assume for the sake of contradiction that the contour were to intersect a spoke twice.
This would mean the closer to s of the two intersections would lie on the segment between

2:11

CGT

2:12

An Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs

s and the further of the two intersections, which we have shown above to be impossible.
Therefore, the contour can only intersect each spoke at most once, and there are O(n) spokes
in VD(S,) and VD(Ss), so the total number of intersections between the contour and the
spokes is at most O(n). <

5 Algebraic decision tree algorithm

Under the algebraic decision tree model, where the time complexity is measured only by
the number of comparisons, we show that the IOAWNN-SL problem can be solved using
O(nlogn) comparisons. Consequently, we can solve the shortest path problem in weighted
unit-disk graphs in O(nlogn) time under the algebraic decision tree model. In the following,
we first describe an O(n log? n) time algorithm under the conventional computational model
and then show how to improve it to O(nlogn) time under the algebraic decision tree model.

5.1 Algorithm under the conventional computational model

Let p1,p2,...,pn be the points to be inserted in this order; each point has a weight. Let P
denote the set of all these points. Let @ be a set of O(n) query points, such that all points
of P are above the z-axis ¢ while all points of) are below ¢. For each query point ¢ € @, we
know the timer when the query is conducted, i.e., we know the index i such that the query
looks for the nearest neighbor of ¢ among the first ¢ points of P. Our goal is to answer all
queries for the points of Q.

We construct a complete binary tree T' whose leaves from left to right correspond to
points p1,pa, ..., p, in this order. For each node v € T, let P, denote the set of points that
are in the leaves of the subtree rooted at v. Let VD(P,) be the additively-weighted Voronoi
diagram for the weighted points of P,; let VD, (P,) be the portion of VD(P,) above £. We
construct VD (P,). If we construct VD, (P,) for all nodes v of T in a bottom-up manner and
use our linear time merge algorithm in Theorem 2, constructing the diagrams VD, (P,) for
all nodes v € T can be done in O(nlogn) time. In addition, we construct Kirkpatrick’s point
location data structure [11] on VD, (P,) for each node v € T, which takes O(|P,|) time.!
Note that we use Kirkpatrick’s point location data structure instead of others such as the
one in [7] because we will need to apply a technique from [6] that requires Kirkpatrick’s data
structure. Constructing the point location data structures for all nodes of T takes O(nlogn)
time.

Consider a query point ¢ € Q). Suppose we are looking for the nearest neighbor of ¢
among the first ¢ points p1,ps2,...,p; of P. Let v; be the leaf of T' corresponding to p;.
Following the path in T from the root to v;, we can find a set V; of nodes of T" such that
the union of P, for all v € V, is exactly {p1,p2,...,p;}. As such, the query can be answered
after performing O(logn) point location queries on VD4 (P,) for all v € V;,. As each point

L Note that Kirkpatrick’s data structure is originally for planar subdivisions in which each edge is a

straight line segment. However, as discussed in [11], the algorithm also works for additively-weighted
Voronoi diagrams (and other types of Voronoi diagrams) since each cell of the diagram is star-shaped. A
subtle issue in our problem is that VD (P,) is only the portion of the complete diagram VD(P,) above
£, and each cell of VD1 (P,) does not contain its site. To circumvent the issue, we can enlarge each cell
of VD4 (P,) by including its site, as follows. For each cell R € VD (P,), if ab is a maximal segment of
RN ¥, then we add the triangle Apab to R, where p is the site of R. Note that Apab must be inside
the cell of p in VD(P,), denoted by R’. As such, the enlarged region R is still star-shaped, contains its
site p, and is a subset of R’. We can then construct Kirkpatrick’s point location data structure on the
subdivision of all these enlarged regions R.

B.W. Brewer and H. Wang

location query takes O(logn) time, answering the nearest neighbor query for ¢ can be done
in O(log2 n) time. Therefore, the total time for answering the queries for all points of @ is
O(nlog®n).

5.2 Algorithm under the algebraic decision tree model

The above solves the problem in O(nlog?n) time. To improve the time to O(nlogn), the
bottleneck is to solve all O(nlogn) point location queries. For this, we resort to a technique
recently developed by Chan and Zheng [6] under the algebraic decision tree model.

For our problem, we can simply apply [6, Theorem 7.2] as a black box to solve all our
point location queries using O(nlogn) comparisons. Roughly speaking, the theorem says the
following: Given a collection of ¢ planar triangulated subdivisions S; of the plane, 1 <1 <'t,
of total size L, and a collection of t point sets @;, 1 < i < t, of total size M, we can locate
the cell of S; that contains each query point ¢ € @;, for all 1 < ¢ < ¢, using a total of
O(L + M + Nlog N) comparisons, where N is the input size.

In our problem, for each node v € T'; we have VD, (P,) as a planar subdivision. Note
that the theorem statement requires the input planar subdivisions to be triangulated. The
triangulation is mainly used to construct Kirkpatrick’s point location data structure [11] on
each planar subdivision. Since we already have Kirkpatrick’s point location data structure for
each VD, (P,) as discussed above, we can simply follow the same algorithm of the theorem.
For each node v € T, we also have a subset @, of points of () that need to locate the cells of
VD, (P,) containing them. Hence, we have ¢t = O(n), the number of nodes of T'. Also, the
total size of VD4 (P,) for all nodes v € T is O(nlogn) and the total size of @, for allv € T
is O(nlogn). Thus, we have L = O(nlogn) and M = O(nlogn). Finally, since the input
of our problem consists of the O(n) points of P and @, we have N = O(n). Consequently,
according to the theorem, all point location queries can be solved using O(L + M + N log N)
comparisons, which is O(nlogn).

We remark that Chan and Zheng solved the offline insertion-only nearest neighbor problem
as an example of [6, Theorem 7.2]. Our application of the theorem to the IOAWNN-SL
problem mirrors their example. The main difference is that our algorithm for merging
additively-weighted Voronoi diagrams above a separating line replaces their use of Kirk-
patrick’s [10] algorithm for merging standard Voronoi diagrams and that we modify the use
of Kirkpatrick’s [11] point location data structure as described in Footnote 1. Therefore, we
refer readers interested in the details of Chan and Zheng’s technique to their paper.

It should be noted that this algorithm is only applicable to the algebraic decision tree
model of computation. The bound on the number of real-RAM operations given by Chan
and Zheng for their technique is (),

6 Conclusion

In this paper, we presented an O(n log? n/loglogn) time algorithm for the SSSP problem
in weighted unit-disk graphs in the standard real-RAM model of computation. The best
known lower bound for this problem is Q(nlogn), which is proven in the algebraic deci-
sion tree model and also applies to the real-RAM model. We have given an algorithm
matching this lower bound in the algebraic decision tree model. Resolving the gap between
O(nlog®n/loglogn) and Q(nlogn) in the real-RAM model remains an open problem. Lower
bounds in computational geometry are commonly proven in the algebraic decision tree model,
so our latter algorithm is also significant because it rules out the possibility of the gap being
closed by an improved lower bound in the algebraic decision tree model. In addition to our

2:13

CGT

2:14

An Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs

algorithms for the SSSP problem in weighted unit-disk graphs, we derived a data structure
for the IOAWNN-SL problem with O(log® n/loglogn) query time and O(log® n/loglogn)
amortized insertion time. We also gave an O(n) time algorithm for the problem of merging

two additively-weighted Voronoi diagrams above a separating line. We leave it as an open

problem to determine if these results can also be achieved in the case where the separating

line constraint is relaxed.

—— References

1

10

11

12

13

14

15

16

Jon L. Bentley. Decomposable searching problems. Information Processing Letters, 8:244-251,
1979. doi:10.1016/0020-0190(79)90117-0.

Bruce W. Brewer and Haitao Wang. An improved algorithm for shortest paths in weighted
unit-disk graphs. In Proceedings of the 36th Canadian Conference on Computational Geometry
(CCCG 2024), pages 5764, 2024.

Sergio Cabello and Miha Jejc¢i¢. Shortest paths in intersection graphs of unit disks. Computa-
tional Geometry: Theory and Applications, 48:360-367, 2015. doi:10.1016/j.comgeo.2014.
12.003.

Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discrete and
Computational Geometry, 64:1235-1252, 2020. doi:10.1007/s00454-020-00229-5.

Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in unit-disk graphs in
slightly subquadratic time. In Proceedings of the 27th International Symposium on Algorithms
and Computation (ISAAC), pages 24:1-24:13, 2016. doi:10.4230/LIPIcs.ISAAC.2016.24.
Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log-star shaving, 2D fractional
cascading, and decision trees. ACM Transactions on Algorithms, 20(3):24:1-24:27, 2023.
doi:10.1145/3591357.

Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in a
monotone subdivision. SIAM Journal on Computing, 15(2):317-340, 1986. doi:10.1137/
0215023.

Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153-174, 1987.
doi:10.1007/BF01840357.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
Discrete and Computational Geometry, 64:838-904, 2020. doi:10.1007/s00454-020-00243-7.
David G. Kirkpatrick. Efficient computation of continuous skeletons. In Proceedings of the
20th Annual Symposium on Foundations of Computer Science (FOCS), pages 18-27, 1979.
doi:10.1109/SFCS.1979.15.

David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28-35, 1983. doi:10.1137/0212002.

Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. SIAM Journal on Computing, 51:723-765, 2022. doi:10.1137/20M1388371.

Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in
Computer Science. Springer, 1983. doi:10.1007/BFB0014927.

Liam Roditty and Michael Segal. On bounded leg shortest paths problems. Algorithmica,
59:583-600, 2011. doi:10.1007/s00453-009-9322-3.

Michael I. Shamos and Dan Hoey. Closest-point problems. In Proceedings of the 16th
Annual Symposium on Foundations of Computer Science (FOCS), pages 151-162, 1975.
doi:10.1109/SFCS.1975.8.

Haitao Wang and Jie Xue. Near-optimal algorithms for shortest paths in weighted unit-
disk graphs. Discrete and Computational Geometry, 64:1141-1166, 2020. doi:10.1007/
s00454-020-00219-7.

https://doi.org/10.1016/0020-0190(79)90117-0
https://doi.org/10.1016/j.comgeo.2014.12.003
https://doi.org/10.1016/j.comgeo.2014.12.003
https://doi.org/10.1007/s00454-020-00229-5
https://doi.org/10.4230/LIPIcs.ISAAC.2016.24
https://doi.org/10.1145/3591357
https://doi.org/10.1137/0215023
https://doi.org/10.1137/0215023
https://doi.org/10.1007/BF01840357
https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1109/SFCS.1979.15
https://doi.org/10.1137/0212002
https://doi.org/10.1137/20M1388371
https://doi.org/10.1007/BFB0014927
https://doi.org/10.1007/s00453-009-9322-3
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1007/s00454-020-00219-7
https://doi.org/10.1007/s00454-020-00219-7

	1 Introduction
	1.1 Our result

	2 The shortest path algorithm
	2.1 The second update

	3 The offline insertion-only additively-weighted nearest neighbor problem with a separating line (IOAWNN-SL)
	4 Merging two additively-weighted Voronoi diagrams
	4.1 Additively-weighted Voronoi diagrams
	4.2 Merging algorithm for Theorem 2
	4.3 Useful lemmas

	5 Algebraic decision tree algorithm
	5.1 Algorithm under the conventional computational model
	5.2 Algorithm under the algebraic decision tree model

	6 Conclusion

