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—— Abstract

Given a set of n > 1 unit disk robots in the Euclidean plane, we consider the fundamental problem of
providing mutual visibility to them: the robots must reposition themselves to reach a configuration
where they all see each other. This problem arises under obstructed visibility, where a robot cannot
see another robot if there is a third robot on the straight line segment between them. This problem
was solved by Sharma et al. [[CDCN, 2018] in the luminous robots model, where each robot is
equipped with an externally visible light that can assume colors from a fixed set of colors, using
9 colors and O(n) rounds. In this work, we present an algorithm that requires only 2 colors and
O(n) rounds. The number of colors is optimal since at least two colors are required even for point
robots [Di Luna et al., Information and Computation, 2017].
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1 Introduction

We consider a set of n unit disk robots in R? and aim to position these robots in such a way
that each pair of robots can see each other (see Figure 1 for an example initial configuration
where not all robots can see each other and an end configuration where they can). This
problem is fundamental in that it is typically the first step in solving more complex problems.
We consider the problem under the classical oblivious robots model [15], where robots are
autonomous (no external control), anonymous (no unique identifiers), indistinguishable (no
external markers), history-oblivious (no memory of activities done in the past), silent (no
means of direct communication), and possibly disoriented (no agreement on their coordinate
systems). We consider this problem under the fully synchronous model, where in every
synchronized cycle, called a round, all robots are activated. All robots execute the same
algorithm, following Look-Compute-Move (LCM) cycles [9] (i.e., when a robot becomes
active, it uses its vision to get a snapshot of its surroundings (Look), computes a destination
point based on the snapshot (Compute), and finally moves towards the computed destination
(Move)). We note that the robots do not initially know n, the total number of robots in the
configuration.

This classical robot model has a long history and has many applications including coverage,
exploration, intruder detection, data delivery, and symmetry breaking [5]. Unfortunately,

* An extended abstract of this paper appeared in the proceedings of the 18th Algorithms and Data
Structures Symposium (WADS 2023) [2].
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(a) (b)

Figure 1 An example of an initial instance (a) and an end configuration (b).

most of the previous work considered the robots to be dimensionless point robots which do
not occupy any space.

The classical model also makes the important assumption of unobstructed visibility, i.e.,
any three collinear robots are mutually visible to each other. This assumption, however,
does not make sense for the unit disk robots we consider. To remove this assumption, robots
under obstructed visibility have been the subject of recent research [1, 3, 4, 6, 7, 8, 10, 11,
12, 13, 14, 19, 20, 22, 24]. Under obstructed visibility, robot 7; can see robot r; if and only if
there is at least one point on the bounding circle of r; that is visible to ;.

Additionally, a variation on this model received significant attention: the luminous robots
model (or robots with lights model) [10, 11, 12, 16, 19, 20, 24]. In this model, robots are
equipped with an externally visible light which can assume colors from a fixed set. The
lights are persistent, i.e., the color of the light is not erased at the end of the LCM cycle.
When the number of colors in the set is 1, this model corresponds to the classical oblivious
robots model [10, 15]. In this model, minimizing the number of lights is one of the objectives
(in addition to execution time and having few, if any, additional assumptions), as requiring
fewer lights would allow for simpler hardware in physical robots.

Being the first step in a number of other problems, including the Gathering and Circle
Formation problems [18], the MUTUAL VISIBILITY problem received significant attention
in this new robots with lights model. When robots are dimensionless points, the MUTUAL
VISIBILITY problem was solved in a series of papers [10, 11, 12, 19, 20, 24]. Unfortunately,
the techniques developed for point robots do not apply directly to the unit disk robots, due to
the lack of collision avoidance. For unit disk robots, much progress has been made in solving
the MUTUAL VISIBILITY problem [1, 3, 4, 7, 8, 13, 17, 18, 21], however these approaches
either require additional assumptions such as chirality (the robots agree on the orientation
of the axes, i.e., on the meaning of clockwise), knowledge of n, or without avoiding collisions.
Additionally, some approaches require a large number of colors and not all approaches bound
the number of rounds needed.

1.1 Related work

Most of the existing work in the robots with lights model considers point robots [10, 11, 20, 24].
Di Luna et al. [10] solved the MUTUAL VISIBILITY problem for those robots with obstructed
visibility in the lights model, using 2 and 3 colors under semi-synchronous and asynchronous
computation, respectively. Sharma et al. [20] provided a solution for point robots that requires
only 2 colors, which is optimal since at least two colors are needed [10]. Unfortunately, the
required number of rounds is not analyzed. Sharma et al. [23] also considered point robots
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in the robots with lights model. In the asynchronous setting, they provide an O(1) time and
O(1) colors solution using their Beacon-Directed Curve Positioning technique to move the
robots.

Mutual visibility has also been studied for fat robots. Agathangelou et al. [1] studied it in
the fat robots model of Czyzowicz et al. [8], where robots are not equipped with lights. Their
approach allows for collisions, assumes chirality, and the robots need to know n, making it
unsuited for our setting. Sharma et al. [21] developed an algorithm that solves coordination
problems for fat robots in O(n) rounds in the classical oblivious model, assuming n is known
to the robots.

Poudel et al. [17] studied the MUTUAL VISIBILITY problem for fat robots on an infinite
grid graph G and the robots have to reposition themselves on the vertices of the graph
G. They provided two algorithms; the first one solves the MUTUAL VISIBILITY problem
in O(y/n) time under a centralized scheduler. The second one solves the same problem in
©(y/n) time under a distributed scheduler, but only for some special instances.

When considering both fat robots and the robots with lights model, the main result is by
Sharma et al. [18]. Their solution uses 9 colors and solves the MUTUAL VISIBILITY problem
in O(n) rounds.

1.2 Contributions

We consider n > 1 unit disk robots in the plane and study the problem of providing mutual
visibility to them. We address this problem in the lights model. In particular, we present an

algorithm that solves the problem in O(n) rounds using only 2 colors while avoiding collisions.

The number of colors is optimal since at least two colors are needed for point robots [10].
Our algorithm works under fully synchronous computation, where all robots are activated

in each round and they perform their LCM cycles simultaneously in synchronized rounds.

The moves of the robots are rigid, i.e., they cannot be interrupted during the execution, for
example by an adversary [15].

Our results improve on previous work in two ways. First, we improve in terms of the
number of colors used compared to [18]. Secondly, by using fat robots and having a linear
number of rounds, we generalize the results known for point robots [10, 20]. Additionally, we
require no additional assumptions such as chirality or knowledge of n.

2 Preliminaries

Consider a set of n > 1 anonymous robots R = {ry,rs,...,r,} operating in the Euclidean
plane. During the entire execution of the algorithm, we assume that n is not known to the
robots. Each robot r; € R is a non-transparent disk with diameter 1, sometimes referred to
as a fat robot. The center of the robot r; is denoted by ¢; and the position of ¢; is also said
to be the position of ;. We denote by dist(r;, ;) the Euclidean distance between the two
robots, i.e., the distance from ¢; to ¢;. To avoid collisions among robots, we have to ensure
that dist(r;,r;) > 1 between any two robots r; and r; (¢ # j) at all times. Each robot r; has

its own coordinate system, and it knows its position with respect to its coordinate system.

Robots may not agree on the orientation of their coordinate systems, i.e., there is no common
notion of direction. Since all the robots are of unit size, they agree implicitly on the unit of
measure of other robots. The robots have a camera to take a snapshot, and the visibility of
the camera is unlimited provided that there are no obstacles (i.e., other robots) [1].

We say that a point p in the plane is visible by a robot r; if there is a point p; in the
bounding circle of r; such that the straight line segment p;p does not intersect any other
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robot. Following the fat robot model [1, 8], we assume that a robot r; can see another robot
r; if there is at least one point on the bounding circle of r; that is visible from r;. We
say that robot r; fulfills the mutual visibility property if r; can see all other robots in R.
Two robots 7; and r; are said to collide at time ¢ if the bounding circles of r; and r; share
a common point at time ¢. For simplicity, we use r; to denote both the robot r; and the
position of its center c¢;.

Each robot r; is equipped with an externally visible light that can assume any color from
a fixed set C of colors. The set C is the same for all robots in R. The color of the light of
robot r at time ¢ can be seen by all robots that are visible to r at time ¢.

A configuration C is a set of n tuples in C x R? which define the colors and positions of
the robots. Let C; denote the configuration at time ¢. Let C;(r;) denote the configuration
C, for robot 74, i.e., the set of tuples in C x R? of the robots visible to ;. A configuration
C; is obstruction-free if for all r; € R, we have that |C¢(r;)| = n. In other words, when all
robots can see each other.

Let H; denote the convex hull formed by the robots in C;. Let 0H; = V; U S; denote the
set of robots on the boundary of Hy, where V; C R is the set of corner robots lying on the
corners of H; and Sy C R is the set of robots lying in the interior of the edges of H;. The
robots in the set V; are called corner robots and those in the set S; are called side robots. The
robots in the set Z; = H;\OH, are called interior robots. Given a robot r; € R, we denote by
H(r;) the convex hull of C(r;). Note that H;(r;) can differ from H; if r; does not see all
robots on the convex hull.

Given two points a,b € R?, we denote by |ab| the length of the straight line segment ab
connecting them. Given a,b,d € R?, we use Zabd to denote the counterclockwise angle at
point b between ab and bd.

At any time t, a robot r; € R is either active or inactive. When active, r; performs a
sequence of Look-Compute-Move (LCM) operations:

Look: a robot takes a snapshot of the positions of the robots visible to it in its own

coordinate system;

Compute: executes its algorithm using the snapshot. This returns a destination point

2 € R? and a color ¢ € C; and

Move: moves to the computed destination z € R? (if x is different than its current

position) and sets its own light to color c.

We assume that the execution starts at time 0. Therefore, at time ¢ = 0, the robots start
in an arbitrary configuration Cy with dist(r;,7;) > 1 for any two robots r;,r; € R2, and the
color of the light of each robot is set to Off.

Formally, the MUTUAL VISIBILITY problem is defined as follows: Given any Cy, in a
finite number of rounds, reach an obstruction-free configuration without having any collisions
in the process. An algorithm is said to solve the MUTUAL VISIBILITY problem if it always
achieves an obstruction-free configuration from any arbitrary initial configuration in a finite
number of rounds. Each robot executes the same algorithm locally every time it is activated.
We measure the quality of the algorithm both in terms of the number of colors and the
number of rounds needed to solve the MUTUAL VISIBILITY problem.

Finally, we need the following definitions to present our MUTUAL VISIBILITY algorithm.
Let e = v703 be a line segment connecting two corner robots v; and vs of H;. Following Di
Luna et al. [11], we define the safe zone S(e) as a non-empty portion of the plane outside
H; such that the corner robots v; and vy of H; remain corner robots when a side robot is
moved into this area: for all points z € S(e), we ensure that Zzvive < 1800_{# and
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v < moo—f%’ where vg, v1, v9, and vz are consecutive vertices of the convex hull of
H; (see Figure 2(a))!.

We note that side robots and interior robots may not always be able to compute S(e)
exactly due to obstructions of visibility leading to different local views. A single side robot on
e can compute S(e) exactly. However, when there is more than one robot on e, S’(e) is the
safe region computed by a robot based on its local view. It is guaranteed that S’(e) C S(e)
(see Figure 2(b) for the safe zone of robot r9, which cannot see v; and thus uses 1 and r3 to
compute a more restricted safe zone).

Figure 2 (a) The safe zone of e = T7v3. (b) The safe zone of a side robot r2 on e.

Unfortunately, interior robots force us to use a slightly modified definition of a safe zone
compared to Di Luna et al. [11]. As our algorithm will later show, we only use the safe zone
of an edge e for the interior robot 71 that is closest to that edge. This implies that r; can
always see both endpoints of e. However, r1 may not be able to see vy and/or vs due to
other interior robots blocking visibility to them. Moreover, if 71 observes an interior robot
r9 between two corner robots in cyclic order (say immediately counterclockwise from vy), it
has no way of checking whether there exists a corner robot that is hidden from r1’s view by
ro. To overcome this issue, we will (pessimistically) assume that ro indeed blocks visibility
to a corner robot and to minimize the implied safe zone defined using this hidden corner
robot, we will assume this robot is infinitely far away from r; in the direction of ro. This

means that the line segment connecting this potential corner robot to v is parallel to 7173.

Hence, we use the line parallel to 7173 through vy to determine the angle allowed for the safe
zone, i.e., Zvgv1vs is the angle between edge e and the line parallel to 773 through vg (see
Figure 3).

[} V3 Vo [ U3

Figure 3 Robot r; cannot determine whether robot r2 blocks visibility to a corner robot. In
either case the line parallel to 7177 is used to compute the safe zone. (a) Robot r2 hides a corner
robot. (b) Robot rz does not hide a corner robot.

! The division by 4 ensures that no robots can become collinear. Values other than 4 can also work.
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3| The mutual visibility algorithm

In this section, we present an algorithm that solves the MUTUAL VISIBILITY problem for
n > 1 unit disk robots under rigid movement in the robots with lights model. Our algorithm
assumes the fully synchronous setting of robots. The algorithm needs two colors: C = { Off,
Red}. A red robot represents a corner robot. A robot whose light is off represents any other
robot. See Figure 4 for an example. Initially, the lights of all robots are off.

U1 V2

Vo U3

Figure 4 The different colors of the robots: corner robots (red), side robots (off), and interior
robots (off).

It has been shown that positioning the robots in the corners (i.e., vertices) of an n-vertex
convex polygon provides a solution to the MUTUAL VISIBILITY problem [10, 11, 14, 19, 20, 24].
Hence, our algorithm also ensures that the robots eventually position themselves in this way.

Conceptually, our general strategy consists of two phases, though the robots themselves
do not explicitly discern between them. In the Side Depletion phase, some side robots
move to become corner robots, ensuring that there are only corner and interior robots
left. In the Interior Depletion phase, interior robots move and become corner robots. The
move-algorithm checks if the robot’s path shares any point with any other robots, ensuring
that no collision occur. Throughout both phases, corner robots slowly move to expand the
convex hull to ensure that the interior robots can move through the edges of the convex hull
when needed. This movement is deterministic and is taken into account when moving robots
to become corners of the expanding hull.

Detailed pseudocode of the algorithm and its subroutines can be found in the appendix.

3.1 The side depletion phase

The first phase of our algorithm is the Side Depletion (SD) phase. During this phase, every
robot first determines if it is a corner, side, or interior robot and sets its light accordingly.
Note that robots can make this distinction themselves, by checking what angle between
consecutive robots it sees: if some angle is larger than 180° it is a corner robot, if the angle
is exactly 180° it is a side robot, and otherwise it is an interior robot.

In every round, all corner robots move a distance of 1 along the angle bisector determined
by its neighbors in the direction that does not intersect the interior of the convex hull. In
other words, in each round, the corner robots move to expand the size of the convex hull.
We note that since all corner robots move this way, they all stay corner robots throughout
this process.

Side robots that see at least one corner robot (i.e., a robot with a red light) move to
become new corner robots of H (using the safe zone described earlier and taking the above
movement of corner robots into account) and change their light to red. Side robots that do
not see a corner robot on their convex hull edge do not move and will become interior robots
in the next round (due to the change to the convex hull), while keeping their light off.

More precisely, a side robot 7 on edge e = v7v3 of Hy moves as follows: If at least one of
its neighbors on o703 is a corner robot, r moves to a point in the safe zone S(e). There are
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at most two such robots r; and ro on each edge U703 (see Figure 5 and 6). Sharma et al. [18]
showed that these can move simultaneously to the safe zone outside the hull. Both r; and ro
become new corners of H and change their lights to red (see Figure 6).

T1 T1
U1 V2 U1 V2
T3 . . T3 . .
v Vo . v Vo . v
3 3 3
(b) (c)

Figure 5 One side robot 71 on an edge e = U102 moves to become a corner robot.

T2 L T2

vy v2 V1 Vg

T3 ° ° 3 ° °
V3 Vo . V3 Vg . U3
(b) (c)

Figure 6 Two side robots 71 and 72 on an edge e = D102 move to become corner robots.

If both of its neighbors on 7703 are not corners (see Figure 7), robot r does not move
and stay in its place, and it will become an interior robot in the next round.

We only execute this phase once, at the start of our algorithm and only move each robot
once.

Vo . U3

Figure 7 When there are more than two side robots on an edge of the convex hull, only two side
robots on the edge move to become corner robots. These are the clockwise and the counterclockwise
extreme side robots. In this case, robots r1 and r2 move to become corner robots.

3.2 The interior depletion phase

Once the SD phase finishes, the Interior Depletion (ID) phase starts. During this phase the
robots in the interior of the hull move such that they become new vertices of the hull.

In every round, all corner robots move as in the SD phase, expanding the convex hull.

This ensures that the length of all edges increases and thus interior robots can move through
these edges to in turn become corner robots themselves. All movement described in the
remainder of this paper takes the (predictably) expanding convex hull into account.

Next we describe how an interior robot moves. Given a robot r;, we define its eligible
edges as those edges of length at least 3 for which no other robot is closer to the edge? and

2 The length of 3 is used to ensure that two robots can move through the same edge without colliding
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r; is not between two other robots at the same distance to this edge. The interior robots
start by determining their eligible edges (see Figure 8(a)). In the figure, robot r; finds edges
102 and Dpu3 eligible, whereas r; finds vov3, and 7; finds v3vy eligible. However, the robots
between 75, 7; find no edge eligible. Let ) denote the set of edges that are eligible to an
interior robot r;. Every interior robot that has an eligible edge moves perpendicular to
one of its eligible edges e towards e to become a corner robot by moving through e (see
Figure 8(b)), while avoiding collisions with other robots (see Figure 8(c)). If the path is
clear, it moves outside the hull into its safe zone to become a new corner as described earlier
(see Figure 8(d)) and changes its color to red (see Figure 8(e)).

Vg U3 Vg V3 v
/ ) 7\ / r;® o, \
Tigoee? J
v [y . V4 o\ Uy U
1 ™ " V1 ] 4 V1

(a) (b)

T Ty T T
V2 U3 V3 U3
T T
o0 L)
U1 K V4 V1 K Vg
k k

(d) ()

Figure 8 (a) The eligible edge computation. The robot r; finds edges v10z and v3v3 eligible,
whereas r; finds U203, and 7; finds v3vz eligible. The robots between 7;, r; find no eligible edges.

(b) Interior robots 7, r; and r; move towards the edge. (c) Since interior robots r;, r; and 7 move
perpendicular to their respective edge, collisions with other robots are avoided. (d) After the interior
robots 7;, r; and r; move, they become corners. (e¢) Robots r;, 7; and r; change their lights to red.

When both phases are finished, the MUTUAL VISIBILITY problem is solved, and all the
robots are in the corners of the convex hull with red lights.

3.3 Special cases

There are two special cases to consider: n = 1, and the case where the initial configuration is
a line. The case n = 1 can be easily recognized by the only robot, since it does not see any
other robot and thus it can terminate.

If in the initial configuration all robots lie on a single line, we differentiate between the
robots that see only one other robot and the robots that see two other robots. If a robot r;
sees only one other robot r;, when r; is activated for the very first time it sets its light to
red and moves orthogonal to the line 7;7; for some arbitrary positive distance. When 7; is
activated in future rounds and Hy(r;) is still a line segment, it can conclude that there are
only two robots and it does nothing until it sees r; set its light to red. Once r; sets its light
to red, r; terminates.

If a robot r; sees two other robots r; and r;, robot r; will be able to tell if Hy(r;) is a
line segment as follows. Robot r; will move orthogonal to line 7;7; and set its light to red if
and only if it sees that the lights of 7; and r; are set to red, as this indicates that both other

with each other (requiring a length of 2) while ensuring that they also do not collide with the corner
robots on the edge (adding a length of 0.5 per corner robot).
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robots see only a single other robot, i.e., n = 3. Otherwise, moving the two extremal robots
of the initial configuration as described above ensures that the configuration is no longer a
line segment, allowing the SD and ID phase to solve the problem.

As these special cases add only a constant number of rounds to the running time and
do not influence the number of colors, we focus on the general case in the remainder of this

paper.

4 Analysis

We proceed to prove that our algorithm solves the MUTUAL VISIBILITY problem in a linear
number of rounds, using only two colors and while avoiding collisions between the robots.
We start with some properties of the Side Depletion phase.

» Lemma 1. Given a configuration Cy and an edge e = 103 of Hy, if a robot r; € e moves
away from e, it will move into the safe zone S(e).

Proof. We prove this lemma using proof techniques similar to those of Lemma 3 in [11].

Let v1 and v2 be the two corner robots that define e. If there is a single robot r € e, r can
compute S(e) exactly and then move into S(e), proving the lemma. Consider the situation
when there are at least two side robots on e. Let r; and r3 be the two robots on e that are
neighbors of v; and vs, respectively. In the fully synchronous setting, both r; and 72 move
from e in the same round. Consider only the move of ry to S(e) (the move of r; follows
similarly).

Robot r9 orders the robots it can see in clockwise order and let this ordering be
{vo,v,72,v2,v3}, where vg is the first robot non-collinear to ry in the clockwise direction
with its light set to red, v is the robot that is collinear with 5 in the clockwise direction,
and v is the collinear robot in the counterclockwise direction with its light set to red, and

vy is the first non-collinear robot in the counterclockwise direction with its light set to red.

Following the rules of Algorithm 5, ro computes o = 180° — Lvgvvg, S = 180° — Lvwvyvs, and
d = min{a/4, 3/4}. We note that since we calculate « by subtracting Zvgvve from 180°, «
may be smaller than the actual angle used to define S(e). Therefore, any point z in the safe
zone computed by r is inside the safe zone of e, and thus, r will move inside S(e). The
same holds for r1. The other robots on e between r; and 79 do not move. |

» Lemma 2. Let r; and r; be the robots that are neighbors of endpoints vi and va on edge e,
respectively. When there are p < 2 side robots on e, r; and r; become corners and change
their light to red in the next round. When there are p > 2 side robots on e, r; and r; become
corners and change their light to red after which all the robots on e between r; and r; lie
instde the convex hull and become interior robots.

Proof. If p <2, r; and r; see only the corners and each other on e. Hence, both robots move
and by Lemma 1 they move into S(e). By moving r; and r; to S(e), they become corner
robots, as was also argued by Di Luna et al. [11].

When p > 2, a similar argument shows that both r; and r; become corners of Hj, after
they move once and change their light to red in the next round. The other side robots on e
remain in their places and since Cj, is not a line, moving r; and r; creates a hull that has
more than three sides, implying that the robots between r; and r; lie strictly inside this hull.
Thus, the other side robots become interior robots. |

» Lemma 3. Given a configuration Cy with ¢ > 1 side robots. After one round, all side
robots become either corner robots or interior robots.

2:9
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Proof. The movements of side robots on different edges of H do not interfere with each other.
Therefore, we prove this lemma for a single edge e and the same argument applies for the
side robots on other edges of H.

When there is only one robot r on e, then r can compute S(e) exactly and move to a
point = € S(e) as soon as it is activated. When there are two or more robots on e, two side
robots (the extreme ones on this edge) become corners in one round by Lemma 2. This
causes the other robots on e to become interior robots.

Since the robots on different edges do not influence each other and the moves on any
edge end in one round, this phase ends in one round. |

Now that there are no more side robots, we argue that the interior robots also eventually
become corners. We first show that the interior robots can determine whether the SD phase
has finished.

» Lemma 4. Given a configuration Cr and an edge e = 0103 of Hy, no robot in the interior
of Hy moves to S(e) if there is a side robot on e.

Proof. If there are side robots in Hy, it is easy to see that every corner robot of Hj on an
edge that contains side robots sees at least one side robot. Similarly, when there are side
robots, interior robots can easily infer that the SD phase is not finished, and hence they do
not move to their respective S(e). <

Next, we argue in a series of lemmas that every interior robot will eventually become
a corner robot and it does not collide with any robots in doing so. Let Cgp denote the
configuration of robots after the SD phase is finished and let Hgp be the convex hull created
by (CSD-

» Lemma 5. Let I, be the set of interior robots in round k € NT. In each round k until
I, = 0, if there is an edge of length at least 3, there is at least one robot in I, for which the
set of line segments @ is not empty.

Proof. We note that every edge of the convex hull of the corner robots Hy, is closest to some
interior robot(s). In particular, this holds for any edge of length at least 3. We note that this
set of interior robots forms a line, as they all have the same closest distance to the edge. Out
of these robots, by definition, the left and right extreme ones have the edge in their Q. <«

» Lemma 6. Let Csp be the configuration after the SD phase ended and let e = v1v3 be the
edge of Hgp closest to some interior robot ;. If the robot r; € I}, mowves, it moves inside the
safe zone S(e).

Proof. We prove this lemma using the proof technique similar to the proof of Lemma 3 in [11].
When there is a single closest interior robot € Iy, r can compute the region S(e) and move
to it, proving the lemma. Consider now the situation when there are at least two closest
interior robots. Let 71 and r2 be two of these robots. Since we work in the fully synchronous
setting, both 1 and ro move at the same time. Consider only the move of r (the move of
r1 follows similarly). Robot 75 orders the corner robots that are visible to it according to
its local notion of clockwise direction and let this ordering be {vg, v1,v2,v3}, where vy is a
corner robot preceding vy in the clockwise direction and v3 is the corner robot following vs in
clockwise direction. Following the rules of our algorithm, ro computes a = 180° — Zvgviv2,
B = 180° — Zvyvavs, and § = min{a/4, 5/4} (see Figure 2). We note that since we calculate
a by subtracting Zvgvive from 180°, « is in fact a lower bound on the actual angle that
any robot in I at the same distance from edge e will compute. Let z’ be the nearest to e
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in the safe zone outside the convex hull such that either Zz'viv9 = 6 or Za'vovs = § and
define x = 2’ + 7om, where m is the intersection point of e. The same holds for r;. Our
algorithm guarantees that in every round at most two closest interior robots to an edge can
move through this edge. <

» Lemma 7. Given any initial configuration Cy, no collisions of robots occur until I, = ().

Proof. This lemma is proved by considering Algorithm 2. An interior robot r; with light off
does not collide with any other interior robot since the move of r; is perpendicular to the

closest edge 7173 and there is sufficient space on the edge for the robot to move through it.

The robots moving through different edges of Hy do not collide since those robots are the
closest robots to those edges because the S(e) of different edges are disjoint. |

» Lemma 8. There exists an integer k € NT such that the robots in I, closest to their eligible
edge are able to move outside the convex hull Hy, and become corner robots with their light
set to red.

Proof. By Lemma 7, the robot r; does not collide with other interior robots while it tries
to move toward the edge v7vz of Hy. Since there is no side robot after the first round by
Lemma 3, those cannot block 7;’s movement. By Lemma 7, there is no collision for robot r;
while it passes e = U703 where v and vy are the endpoints of the edge that r; passes through
to its computed point in S(e). Since the movements are rigid, r; reaches its computed point
in the safe zone once it moves and changes its color to red. |

» Lemma 9. Given any initial configuration Cy, there exists an integer k € NT such that
I, = 0 in Cy, and the corner robots do not move in any round k' > k.

Proof. When I # () each corner robot sees at least one robot with light off. Therefore,
combining the results of Lemmas 5, 6, 7, and 8 with this observation, we have that, given
any Cg, there is some round k € NT such that I}, = 0.

Corner robots do not move after I, = (), since they do not see robots with light off, thus
terminating. <

» Theorem 10. Given any initial configuration Cy, there is some round k € N such that
all robots lie on Hy, and have their lights set to red.

Proof. Lemma 9 shows that there exists a round k such that there are no interior robots
left. Interior robots that moved to become corner robots changed their lights to red as soon
as they reached their corner positions. Furthermore, the interior robots move to the safe
zone where they by definition become corners. Since Lemma 9 guarantees that there are no
collisions, the robots occupy different positions of Hj, and all their lights will be red. |

Next, we argue that the robots can determine when there are no interior robots left.

» Lemma 11. If there exists a robot with light off, there is at least one interior robot that is
visible to any corner robot ;.

Proof. If there is at least one interior robot, every corner robot can see some interior robot
(for example the one closest to it). By definition, every interior robot has its light off, proving
the lemma. |

» Lemma 12. Given a robot r; € R with its light set to red and a round k € NV, if all robots
in Ci(r;) have their light set to red, and no robot is in the interior of Hy(r;), then Cy does
not contain interior robots.
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Proof. When all the robots in Cg(r;) have their light set to red, this means that there is no
robot with light off. Since any interior robot would have color off and by Lemma 11 at least
one of these robots would be visible to r;, this proves the lemma. |

We are now ready to prove that the MUTUAL VISIBILITY problem is solvable using only
two colors. Let C;p denote the configuration of robots after the ID phase is finished and let
H;p be the convex hull created by C;p.

» Theorem 13. The MUTUAL VISIBILITY problem is solvable without collisions for unit disk
robots in the fully synchronous setting using two colors in the robots with lights model.

Proof. We have from Lemma 3 that from any initial non-collinear Cg, we reach a configuration
Cgsp without side robots after one round, some becoming corner robots and some becoming
interior robots. Once the SD phase is over, Theorem 10 shows that the ID phase moves all
interior robots to become corner robots. We have from Lemma 12 that robots can locally
detect whether the ID phase is over and configuration Cjp is reached. By Lemma 7, no
collisions occur in the SD and ID phases.

Therefore, starting from any non-collinear configuration Cyp, all robots eventually become
corners of the convex hull, solving the MUTUAL VISIBILITY problem without collisions.

It remains to show that starting from any initial collinear configuration Cy the robots
correctly evolve into some non-collinear configuration from which we can apply the above
analysis. If n < 3, this can be shown through a simple case analysis: For n = 1, when the
only robot becomes active, it sees no other robot, changes its color to red and immediately
terminates. For n = 2, robot r; changes its color to red when it becomes active for the first
time and moves orthogonal to line 7;7; that connects it to the only other robot r; it sees in
C(r;). When r; later realizes that |C(r;)| is still 2 and r;.light = red, it simply terminates.
For n = 3, when r; realizes that both of its neighbors in C(r;) have light set to red and are
collinear with it, it moves orthogonal to that line and sets its light to red. The next time it
becomes active, it finds itself at one of the corners and simply terminates as it sees all the
other robots in the corners of the hull with light set to red.

For n > 4, let a and b be the two robots that occupy the corners of the line segment Hj
(i.e. the endpoint robots of Hp). Nothing happens until a or b is activated, setting its light to
red, and moving orthogonal to Hy. After a or b moves, when another robot becomes active,
it realizes that the configuration is not a line anymore and enters the normal execution of
our algorithm. It is easy to see that after the line segment Hj evolves into a polygonal shape,
it never reverts to being a line.

Finally, since our algorithm uses only two colors, the theorem follows. |

It remains to analyze the number of rounds needed by our algorithm.

» Lemma 14. After O(n) rounds, the convex hull has grown enough in size to allow all n
robots to become corners.

Proof. Since in every round all corner robots move a distance of 1 along the bisector of
their exterior angle, the length of the convex hull grows by at least 1 in every round. Note
that when a robot becomes a corner, it moves outside the current convex hull and thus, by
triangle inequality, extends the hull that way as well.

Hence, after at most 4n rounds the convex hull is long enough to ensure that there is
space for all interior robots: there are at most n edges of the convex hull and for each of
them to not be long enough, their total length is strictly less than 3n. Hence, by expanding
the convex hull by a total of 4n, we ensure that there is enough space for each of the less
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than n interior robots of diameter 1. Expanding the convex hull a total of 4n takes O(n)
rounds, completing the proof. |

We note that for the above lemma the corner robots do not need to know n, as they can
simply keep moving until the algorithm finishes.

» Lemma 15. The Interior Depletion phase of the mutual visibility algorithm finishes in
O(n) rounds.

Proof. When an interior robot can move outside the convex hull to become a corner robot,
it needs at most a constant rounds to do so. During those rounds the robot becomes active,
checks its path while moving to the safe zone to become a corner robot, and changes its light
to red. There are fewer than n interior robots and by Lemma 5 at least one robot can move
when there is an edge of length at least 3. By Lemma 14 in O(n) rounds there are sufficient
long edges to allow the less than n interior robots to move through them. Therefore, the
Interior Depletion phase of the mutual visibility algorithm finishes in O(n) rounds. <

We now have the following theorem bounding the running time of our algorithm using
Lemmas 3 and 15 and Theorem 13.

» Theorem 16. Our algorithm solves the MUTUAL VISIBILITY problem for unit disk robots
in O(n) rounds without collisions in the fully synchronous setting using two colors.

5 Concluding remarks

We studied the MUTUAL VISIBILITY problem for a system of autonomous fat robots of unit
disk size in the robots with lights model. We described an algorithm for this problem that uses
two colors and works for fully synchronous computation of fat robots under rigid movements.
Our solution is optimal with respect to the number of colors used since even for point robots at
least two colors are required [20]. Also, our algorithm solves the MUTUAL VISIBILITY problem
in O(n) rounds. For future work, it is interesting to extend our algorithm for non-rigid
movements of robots and also for semi-synchronous and asynchronous computations.
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A Pseudocode

Algorithm 1 MUTUAL VISIBILITY algorithm

1 // Look-Compute-Move cycle for robot r; of unit disk size

2 Ci(r;) < configuration Cy, for robot r; (including ;);

3 H(r;) < convex hull of the positions of the robots in Cg(r;);
4 if |Cg(r;)| = 1 then Terminate;

5 else if H(r;) is a line segment then

6 if |Cx(r;)| = 2 then

7 Let T € Ck(Ti);

8 if r;.light = Off then

9 Move orthogonal to line m} by any non-zero distance;
10 ri.light < Red,
11 else if r;.light = Red then
12 ri.light = Red,
13 Terminate;
14 else if |Ci(r;)| = 3 then
15 Let r;, 7 € Ci(rs);
16 if r;.light = Off A r;.light = Red A r;.light = Red then
17 Move orthogonal to line W by any non-zero distance;
18 ri.light < Red;

19 else if r; is a corner robot of Hy(r;) then Corner(r;, Cy(r;), Hy(r;));
20 else if r; is an interior robot of Hy(r;) then Interior(r;, Cy(r;), Hk(r;));
21 else if r; is a side robot of Hy,(r;) then Side(r;, Cr(r;), Hx(r;));
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Algorithm 2 Interior(r;,Cy(r;), Hi(r;))

1 if r;.light = Off then
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Order the robots in Hy(r;) starting from any arbitrary robot v1 in the clockwise order so that
T ={v1,...,Vast,v1}, where v is the first robot and vj,s¢ is the last robot;
Let ¢,d be any pair of two consecutive robots in 7 with c.light = Red and d.light = Red,
Let HP.4 be the half-plane defined by line parallel to <c_d} that passes through r; such that ¢, d
are in HP,g4;
Q + set of line segments cd such that:
(a) the triangle r;, ¢, d does not contain (neither inside nor on its edges) any other robot
of Cg(r;), and
(b) there is no robot in edge cd, and
(c) there is no robot in Cy(r;)\Hg(r;) closer to edge cd than r;, and
(d) there are no two robots with equal distance to cd appearing counterclockwise and
clockwise of ; with respect to the local coordinate system of r;, and
(e) the length of cd is at least 3;
if Q is not empty then
uruz < the line segment in ) between two robots w1, u2 that is closest to r;;
if there is no other robot with light Off that is at equal distance to uiuz then

m < midpoint of uiuz;

L < line perpendicular to ujuz passing through its midpoint m;

Order the robots in the counterclockwise order of r; (with respect to the local
coordinate system of r;) such that the order is 7; = {v1,v2,v3,v4};

Compute angles o = 180° — Zv4vzvz and B = 180° — Zviv2vs, and set
5 = min{a/4, B/4};

Compute a point &’ such that Zz'v3vs = 6 and a point =’ such that Zz" vevs = §;

L(r;im) <+ line segment connecting r; and m;

x =z’ + L(r;m), where x’ is the nearest point to e in the safe zone outside the
convex hull;

Move(ri, C(ri), Hg (r:), w1, u2, x);

else if there exists a robot in the clockwise direction of r; (with respect to the local
coordinate system of r;) with light Off that is at equal distance to uiuz then

m < point in ujuz at % from endpoint u1;

L <+ line perpendicular to wiuz passing through the point m;

Order the robots in the counterclockwise order of r; (with respect to the local
coordinate system of r;) such that the order is 7; = {v1, v2,v3,v4};

Compute angles o = 180° — Zv4v3zvz and B = 180° — Zvivavs, and set
5 = min{a/4, 3/4};

L(r;im) + line segment connecting r; and m;

Compute a point &’ such that Zz'v3vs = 6 and a point =’ such that Zz" vev3 = §;

=1z + L(rym), where 2’ is the nearest point to e in the safe zone outside the
convex hull;

Move(ri, Cr(ri), Hg (r:), w1, u2, x);

else if there exists a robot in the counterclockwise direction of r; (with respect to the
local coordinate system of r;) with light Off that is at equal distance to uiuz then

m < point in ujuz at w from endpoint usz;

L <+ line perpendicular to wjuz passing through the point m;

Order the robots in the counterclockwise order of r; (with respect to the local
coordinate system of r;) such that the order is T; = {v1,v2,v3,v4};

L(r;m) < line segment connecting r; and m;

Compute angles o = 180° — Zv4vzvz and B = 180° — Zvivavs, and set
5 = minfa/4, 3/4};

Compute a point 2’ such that Zz'vsve = ¢ and a point 2" such that Zz"vov3 = J;

x = 2’ + L(r;m), where 2’ is the nearest point to e in the safe zone outside the
convex hull;

Move(r;, Ci(ri), Hi (r:), u1, uz, z);
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Algorithm 3 Corner(r;, Ci(r;), Hy (r:))

Move r; distance 1 along the angle bisector of its neighbors on Cg(r;) in the direction
that does not intersect the interior of Cg(r;);

2 if r;.light = Off then r;.light < Red;

else if Vr € Ci(r;), r.light = Red then Terminate;

Algorithm 4 Move(r;, Ci(r;), Hi (i), u1, uz, x)

Ly, < line segment connecting r; and z;
L, ., L) . < lines parallel to L,,, at distance 1/2 on either side of L., towards @ tz;
if L) . and L , share no point occupied by any other robot then

Move to point z in the safe zone;

ri.light < Red;

Algorithm 5 Side(r;, Ci(r;), Hy (r:))

s

if at least one neighbor of r; in the edge e it belongs to has light Red then

Order the robots in the counterclockwise order of r; (with respect to the local
coordinate system of ;) such that the order is T; = {vs, va,7;, 7, v9}, where vg is
the first robot non-collinear to r; in the clockwise direction of r; with v3.light =
Red, vs is the robot that is collinear with r; in the clockwise direction of r;, and
r is the collinear robot in the counterclockwise direction of r;, and vg is the first
non-collinear robot to r; in the counterclockwise direction of r; with vg.light =
Red,

Compute angles a = 180° — Zygrr; and 8 = 180° — Zr;vav3, and set
d = min{a/4, 5/4};

Compute a points ' and z” such that Zz'ver; = § and Zz"rr; = 6 and ;2" and
r;x"" are perpendicular to e;

x < 7’ or " whichever is nearest to e;

Move perpendicular to e with destination x;

r;.light < Red,
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