
The Mutual Visibility Problem for Fat Robots with
Lights∗

Rusul J. Alsaedi #

University of Sydney, Australia

Joachim Gudmundsson #

University of Sydney, Australia

André van Renssen #

University of Sydney, Australia

Abstract
Given a set of n ≥ 1 unit disk robots in the Euclidean plane, we consider the fundamental problem of
providing mutual visibility to them: the robots must reposition themselves to reach a configuration
where they all see each other. This problem arises under obstructed visibility, where a robot cannot
see another robot if there is a third robot on the straight line segment between them. This problem
was solved by Sharma et al. [ICDCN, 2018] in the luminous robots model, where each robot is
equipped with an externally visible light that can assume colors from a fixed set of colors, using
9 colors and O(n) rounds. In this work, we present an algorithm that requires only 2 colors and
O(n) rounds. The number of colors is optimal since at least two colors are required even for point
robots [Di Luna et al., Information and Computation, 2017].

Keywords and phrases Mutual visibility, Fat robots, Obstructed visibility, Collision avoidance,
Robots with lights

Digital Object Identifier 10.57717/cgt.v5i1.81

Funding Funded by the Australian Government through the Australian Research Council DP240101353.

1 Introduction

We consider a set of n unit disk robots in R2 and aim to position these robots in such a way
that each pair of robots can see each other (see Figure 1 for an example initial configuration
where not all robots can see each other and an end configuration where they can). This
problem is fundamental in that it is typically the first step in solving more complex problems.
We consider the problem under the classical oblivious robots model [15], where robots are
autonomous (no external control), anonymous (no unique identifiers), indistinguishable (no
external markers), history-oblivious (no memory of activities done in the past), silent (no
means of direct communication), and possibly disoriented (no agreement on their coordinate
systems). We consider this problem under the fully synchronous model, where in every
synchronized cycle, called a round, all robots are activated. All robots execute the same
algorithm, following Look-Compute-Move (LCM) cycles [9] (i.e., when a robot becomes
active, it uses its vision to get a snapshot of its surroundings (Look), computes a destination
point based on the snapshot (Compute), and finally moves towards the computed destination
(Move)). We note that the robots do not initially know n, the total number of robots in the
configuration.

This classical robot model has a long history and has many applications including coverage,
exploration, intruder detection, data delivery, and symmetry breaking [5]. Unfortunately,

∗ An extended abstract of this paper appeared in the proceedings of the 18th Algorithms and Data
Structures Symposium (WADS 2023) [2].

© Rusul J. Alsaedi, Joachim Gudmundsson, and André van Renssen
licensed under Creative Commons License CC-BY 4.0

Computing in Geometry and Topology: Volume 5(1); Article 2; pp. 2:1–2:17

mailto:rals2984@uni.sydney.edu.au
https://orcid.org/0000-0002-2942-9519
mailto:joachim.gudmundsson@sydney.edu.au
https://orcid.org/0000-0002-6778-7990
mailto:andre.vanrenssen@sydney.edu.au
https://orcid.org/0000-0002-9294-9947
https://doi.org/10.57717/cgt.v5i1.81
https://creativecommons.org/licenses/by/4.0/
https://www.cgt-journal.org/

2:2 The Mutual Visibility Problem for Fat Robots with Lights

(a) (b)

Figure 1 An example of an initial instance (a) and an end configuration (b).

most of the previous work considered the robots to be dimensionless point robots which do
not occupy any space.

The classical model also makes the important assumption of unobstructed visibility, i.e.,
any three collinear robots are mutually visible to each other. This assumption, however,
does not make sense for the unit disk robots we consider. To remove this assumption, robots
under obstructed visibility have been the subject of recent research [1, 3, 4, 6, 7, 8, 10, 11,
12, 13, 14, 19, 20, 22, 24]. Under obstructed visibility, robot ri can see robot rj if and only if
there is at least one point on the bounding circle of rj that is visible to ri.

Additionally, a variation on this model received significant attention: the luminous robots
model (or robots with lights model) [10, 11, 12, 16, 19, 20, 24]. In this model, robots are
equipped with an externally visible light which can assume colors from a fixed set. The
lights are persistent, i.e., the color of the light is not erased at the end of the LCM cycle.
When the number of colors in the set is 1, this model corresponds to the classical oblivious
robots model [10, 15]. In this model, minimizing the number of lights is one of the objectives
(in addition to execution time and having few, if any, additional assumptions), as requiring
fewer lights would allow for simpler hardware in physical robots.

Being the first step in a number of other problems, including the Gathering and Circle
Formation problems [18], the Mutual Visibility problem received significant attention
in this new robots with lights model. When robots are dimensionless points, the Mutual
Visibility problem was solved in a series of papers [10, 11, 12, 19, 20, 24]. Unfortunately,
the techniques developed for point robots do not apply directly to the unit disk robots, due to
the lack of collision avoidance. For unit disk robots, much progress has been made in solving
the Mutual Visibility problem [1, 3, 4, 7, 8, 13, 17, 18, 21], however these approaches
either require additional assumptions such as chirality (the robots agree on the orientation
of the axes, i.e., on the meaning of clockwise), knowledge of n, or without avoiding collisions.
Additionally, some approaches require a large number of colors and not all approaches bound
the number of rounds needed.

1.1 Related work
Most of the existing work in the robots with lights model considers point robots [10, 11, 20, 24].
Di Luna et al. [10] solved the Mutual Visibility problem for those robots with obstructed
visibility in the lights model, using 2 and 3 colors under semi-synchronous and asynchronous
computation, respectively. Sharma et al. [20] provided a solution for point robots that requires
only 2 colors, which is optimal since at least two colors are needed [10]. Unfortunately, the
required number of rounds is not analyzed. Sharma et al. [23] also considered point robots

R.J. Alsaedi, J. Gudmundsson, and A. van Renssen 2:3

in the robots with lights model. In the asynchronous setting, they provide an O(1) time and
O(1) colors solution using their Beacon-Directed Curve Positioning technique to move the
robots.

Mutual visibility has also been studied for fat robots. Agathangelou et al. [1] studied it in
the fat robots model of Czyzowicz et al. [8], where robots are not equipped with lights. Their
approach allows for collisions, assumes chirality, and the robots need to know n, making it
unsuited for our setting. Sharma et al. [21] developed an algorithm that solves coordination
problems for fat robots in O(n) rounds in the classical oblivious model, assuming n is known
to the robots.

Poudel et al. [17] studied the Mutual Visibility problem for fat robots on an infinite
grid graph G and the robots have to reposition themselves on the vertices of the graph
G. They provided two algorithms; the first one solves the Mutual Visibility problem
in O(

√
n) time under a centralized scheduler. The second one solves the same problem in

Θ(
√

n) time under a distributed scheduler, but only for some special instances.
When considering both fat robots and the robots with lights model, the main result is by

Sharma et al. [18]. Their solution uses 9 colors and solves the Mutual Visibility problem
in O(n) rounds.

1.2 Contributions
We consider n ≥ 1 unit disk robots in the plane and study the problem of providing mutual
visibility to them. We address this problem in the lights model. In particular, we present an
algorithm that solves the problem in O(n) rounds using only 2 colors while avoiding collisions.
The number of colors is optimal since at least two colors are needed for point robots [10].

Our algorithm works under fully synchronous computation, where all robots are activated
in each round and they perform their LCM cycles simultaneously in synchronized rounds.
The moves of the robots are rigid, i.e., they cannot be interrupted during the execution, for
example by an adversary [15].

Our results improve on previous work in two ways. First, we improve in terms of the
number of colors used compared to [18]. Secondly, by using fat robots and having a linear
number of rounds, we generalize the results known for point robots [10, 20]. Additionally, we
require no additional assumptions such as chirality or knowledge of n.

2 Preliminaries

Consider a set of n ≥ 1 anonymous robots R = {r1, r2, . . . , rn} operating in the Euclidean
plane. During the entire execution of the algorithm, we assume that n is not known to the
robots. Each robot ri ∈ R is a non-transparent disk with diameter 1, sometimes referred to
as a fat robot. The center of the robot ri is denoted by ci and the position of ci is also said
to be the position of ri. We denote by dist(ri, rj) the Euclidean distance between the two
robots, i.e., the distance from ci to cj . To avoid collisions among robots, we have to ensure
that dist(ri, rj) ≥ 1 between any two robots ri and rj (i ̸= j) at all times. Each robot ri has
its own coordinate system, and it knows its position with respect to its coordinate system.
Robots may not agree on the orientation of their coordinate systems, i.e., there is no common
notion of direction. Since all the robots are of unit size, they agree implicitly on the unit of
measure of other robots. The robots have a camera to take a snapshot, and the visibility of
the camera is unlimited provided that there are no obstacles (i.e., other robots) [1].

We say that a point p in the plane is visible by a robot ri if there is a point pi in the
bounding circle of ri such that the straight line segment pip does not intersect any other

CGT

2:4 The Mutual Visibility Problem for Fat Robots with Lights

robot. Following the fat robot model [1, 8], we assume that a robot ri can see another robot
rj if there is at least one point on the bounding circle of rj that is visible from ri. We
say that robot ri fulfills the mutual visibility property if ri can see all other robots in R.
Two robots ri and rj are said to collide at time t if the bounding circles of ri and rj share
a common point at time t. For simplicity, we use ri to denote both the robot ri and the
position of its center ci.

Each robot ri is equipped with an externally visible light that can assume any color from
a fixed set C of colors. The set C is the same for all robots in R. The color of the light of
robot r at time t can be seen by all robots that are visible to r at time t.

A configuration C is a set of n tuples in C × R2 which define the colors and positions of
the robots. Let Ct denote the configuration at time t. Let Ct(ri) denote the configuration
Ct for robot ri, i.e., the set of tuples in C × R2 of the robots visible to ri. A configuration
Ct is obstruction-free if for all ri ∈ R, we have that |Ct(ri)| = n. In other words, when all
robots can see each other.

Let Ht denote the convex hull formed by the robots in Ct. Let ∂Ht = Vt ∪ St denote the
set of robots on the boundary of Ht, where Vt ⊆ R is the set of corner robots lying on the
corners of Ht and St ⊆ R is the set of robots lying in the interior of the edges of Ht. The
robots in the set Vt are called corner robots and those in the set St are called side robots. The
robots in the set It = Ht\∂Ht are called interior robots. Given a robot ri ∈ R, we denote by
Ht(ri) the convex hull of Ct(ri). Note that Ht(ri) can differ from Ht if ri does not see all
robots on the convex hull.

Given two points a, b ∈ R2, we denote by |ab| the length of the straight line segment ab

connecting them. Given a, b, d ∈ R2, we use ∠abd to denote the counterclockwise angle at
point b between ab and bd.

At any time t, a robot ri ∈ R is either active or inactive. When active, ri performs a
sequence of Look-Compute-Move (LCM) operations:

Look: a robot takes a snapshot of the positions of the robots visible to it in its own
coordinate system;
Compute: executes its algorithm using the snapshot. This returns a destination point
x ∈ R2 and a color c ∈ C; and
Move: moves to the computed destination x ∈ R2 (if x is different than its current
position) and sets its own light to color c.

We assume that the execution starts at time 0. Therefore, at time t = 0, the robots start
in an arbitrary configuration C0 with dist(ri, rj) ≥ 1 for any two robots ri, rj ∈ R2, and the
color of the light of each robot is set to Off.

Formally, the Mutual Visibility problem is defined as follows: Given any C0, in a
finite number of rounds, reach an obstruction-free configuration without having any collisions
in the process. An algorithm is said to solve the Mutual Visibility problem if it always
achieves an obstruction-free configuration from any arbitrary initial configuration in a finite
number of rounds. Each robot executes the same algorithm locally every time it is activated.
We measure the quality of the algorithm both in terms of the number of colors and the
number of rounds needed to solve the Mutual Visibility problem.

Finally, we need the following definitions to present our Mutual Visibility algorithm.
Let e = v1v2 be a line segment connecting two corner robots v1 and v2 of Ht. Following Di
Luna et al. [11], we define the safe zone S(e) as a non-empty portion of the plane outside
Ht such that the corner robots v1 and v2 of Ht remain corner robots when a side robot is
moved into this area: for all points x ∈ S(e), we ensure that ∠xv1v2 ≤ 180◦−∠v0v1v2

4 and

R.J. Alsaedi, J. Gudmundsson, and A. van Renssen 2:5

∠v1v2x ≤ 180◦−∠v1v2v3
4 , where v0, v1, v2, and v3 are consecutive vertices of the convex hull of

Ht (see Figure 2(a))1.
We note that side robots and interior robots may not always be able to compute S(e)

exactly due to obstructions of visibility leading to different local views. A single side robot on
e can compute S(e) exactly. However, when there is more than one robot on e, S′(e) is the
safe region computed by a robot based on its local view. It is guaranteed that S′(e) ⊆ S(e)
(see Figure 2(b) for the safe zone of robot r2, which cannot see v1 and thus uses r1 and r3 to
compute a more restricted safe zone).

v0

v1 v2

v3

r1 r2

r3

S(e)

(a) (b)

v1 v2

v3

r1 r2

r3

v0

S′(e)

Figure 2 (a) The safe zone of e = v1v2. (b) The safe zone of a side robot r2 on e.

Unfortunately, interior robots force us to use a slightly modified definition of a safe zone
compared to Di Luna et al. [11]. As our algorithm will later show, we only use the safe zone
of an edge e for the interior robot r1 that is closest to that edge. This implies that r1 can
always see both endpoints of e. However, r1 may not be able to see v0 and/or v3 due to
other interior robots blocking visibility to them. Moreover, if r1 observes an interior robot
r2 between two corner robots in cyclic order (say immediately counterclockwise from v1), it
has no way of checking whether there exists a corner robot that is hidden from r1’s view by
r2. To overcome this issue, we will (pessimistically) assume that r2 indeed blocks visibility
to a corner robot and to minimize the implied safe zone defined using this hidden corner
robot, we will assume this robot is infinitely far away from r1 in the direction of r2. This
means that the line segment connecting this potential corner robot to v1 is parallel to r1r2.
Hence, we use the line parallel to r1r2 through v0 to determine the angle allowed for the safe
zone, i.e., ∠v0v1v2 is the angle between edge e and the line parallel to r1r2 through v0 (see
Figure 3).

r1
r2

S(e)

v0

v1 v2

v3

r1
r2

(a) (b)

v1 v2

v3v0

S(e)

Figure 3 Robot r1 cannot determine whether robot r2 blocks visibility to a corner robot. In
either case the line parallel to r1r2 is used to compute the safe zone. (a) Robot r2 hides a corner
robot. (b) Robot r2 does not hide a corner robot.

1 The division by 4 ensures that no robots can become collinear. Values other than 4 can also work.

CGT

2:6 The Mutual Visibility Problem for Fat Robots with Lights

3 The mutual visibility algorithm

In this section, we present an algorithm that solves the Mutual Visibility problem for
n ≥ 1 unit disk robots under rigid movement in the robots with lights model. Our algorithm
assumes the fully synchronous setting of robots. The algorithm needs two colors: C = {Off,
Red}. A red robot represents a corner robot. A robot whose light is off represents any other
robot. See Figure 4 for an example. Initially, the lights of all robots are off.

v0

v1 v2
r1 r2

r3

v3

Figure 4 The different colors of the robots: corner robots (red), side robots (off), and interior
robots (off).

It has been shown that positioning the robots in the corners (i.e., vertices) of an n-vertex
convex polygon provides a solution to the Mutual Visibility problem [10, 11, 14, 19, 20, 24].
Hence, our algorithm also ensures that the robots eventually position themselves in this way.

Conceptually, our general strategy consists of two phases, though the robots themselves
do not explicitly discern between them. In the Side Depletion phase, some side robots
move to become corner robots, ensuring that there are only corner and interior robots
left. In the Interior Depletion phase, interior robots move and become corner robots. The
move-algorithm checks if the robot’s path shares any point with any other robots, ensuring
that no collision occur. Throughout both phases, corner robots slowly move to expand the
convex hull to ensure that the interior robots can move through the edges of the convex hull
when needed. This movement is deterministic and is taken into account when moving robots
to become corners of the expanding hull.

Detailed pseudocode of the algorithm and its subroutines can be found in the appendix.

3.1 The side depletion phase
The first phase of our algorithm is the Side Depletion (SD) phase. During this phase, every
robot first determines if it is a corner, side, or interior robot and sets its light accordingly.
Note that robots can make this distinction themselves, by checking what angle between
consecutive robots it sees: if some angle is larger than 180◦ it is a corner robot, if the angle
is exactly 180◦ it is a side robot, and otherwise it is an interior robot.

In every round, all corner robots move a distance of 1 along the angle bisector determined
by its neighbors in the direction that does not intersect the interior of the convex hull. In
other words, in each round, the corner robots move to expand the size of the convex hull.
We note that since all corner robots move this way, they all stay corner robots throughout
this process.

Side robots that see at least one corner robot (i.e., a robot with a red light) move to
become new corner robots of H (using the safe zone described earlier and taking the above
movement of corner robots into account) and change their light to red. Side robots that do
not see a corner robot on their convex hull edge do not move and will become interior robots
in the next round (due to the change to the convex hull), while keeping their light off.

More precisely, a side robot r on edge e = v1v2 of Hk moves as follows: If at least one of
its neighbors on v1v2 is a corner robot, r moves to a point in the safe zone S(e). There are

R.J. Alsaedi, J. Gudmundsson, and A. van Renssen 2:7

at most two such robots r1 and r2 on each edge v1v2 (see Figure 5 and 6). Sharma et al. [18]
showed that these can move simultaneously to the safe zone outside the hull. Both r1 and r2
become new corners of H and change their lights to red (see Figure 6).

r1

v0

v1 v2

v3

r3

S(e)

r1

v0

v1 v2

v3

r3

r1

v0

v1 v2

v3

r3

(a) (b) (c)

Figure 5 One side robot r1 on an edge e = v1v2 moves to become a corner robot.

v0

v1 v2
r1 r2

r3

S(e)

v3
v0

r3

v1
r1 r2 v2

v0

r3

v1
r1 r2

v2

(a) (b) (c)

v3 v3

Figure 6 Two side robots r1 and r2 on an edge e = v1v2 move to become corner robots.

If both of its neighbors on v1v2 are not corners (see Figure 7), robot r does not move
and stay in its place, and it will become an interior robot in the next round.

We only execute this phase once, at the start of our algorithm and only move each robot
once.

v3v0

v1 v2
r1 r2

r3
v3

v0

r3

v1
r1 r2

v2

v0

r3

v1
r1 r2

v2

(a) (b) (c)

v3

Figure 7 When there are more than two side robots on an edge of the convex hull, only two side
robots on the edge move to become corner robots. These are the clockwise and the counterclockwise
extreme side robots. In this case, robots r1 and r2 move to become corner robots.

3.2 The interior depletion phase
Once the SD phase finishes, the Interior Depletion (ID) phase starts. During this phase the
robots in the interior of the hull move such that they become new vertices of the hull.

In every round, all corner robots move as in the SD phase, expanding the convex hull.
This ensures that the length of all edges increases and thus interior robots can move through
these edges to in turn become corner robots themselves. All movement described in the
remainder of this paper takes the (predictably) expanding convex hull into account.

Next we describe how an interior robot moves. Given a robot ri, we define its eligible
edges as those edges of length at least 3 for which no other robot is closer to the edge2 and

2 The length of 3 is used to ensure that two robots can move through the same edge without colliding

CGT

2:8 The Mutual Visibility Problem for Fat Robots with Lights

ri is not between two other robots at the same distance to this edge. The interior robots
start by determining their eligible edges (see Figure 8(a)). In the figure, robot ri finds edges
v1v2 and v2v3 eligible, whereas rj finds v2v3, and rl finds v3v4 eligible. However, the robots
between ri, rj find no edge eligible. Let Q denote the set of edges that are eligible to an
interior robot ri. Every interior robot that has an eligible edge moves perpendicular to
one of its eligible edges e towards e to become a corner robot by moving through e (see
Figure 8(b)), while avoiding collisions with other robots (see Figure 8(c)). If the path is
clear, it moves outside the hull into its safe zone to become a new corner as described earlier
(see Figure 8(d)) and changes its color to red (see Figure 8(e)).

v1 v1

v2 v3

v4

ri rj

rlrk
v1

v1

v2 v3

v4

ri rj

rl

rk
v1

v2 v3

v4

ri rj

rl

rk

(a) (b) (c)

(d) (e)

v2 v3

v4

ri rj

rlrk

v2 v3

v4
ri rj

rlrk

Figure 8 (a) The eligible edge computation. The robot ri finds edges v1v2 and v2v3 eligible,
whereas rj finds v2v3, and rl finds v3v4 eligible. The robots between ri, rj find no eligible edges.
(b) Interior robots ri, rj and rl move towards the edge. (c) Since interior robots ri, rj and rl move
perpendicular to their respective edge, collisions with other robots are avoided. (d) After the interior
robots ri, rj and rl move, they become corners. (e) Robots ri, rj and rl change their lights to red.

When both phases are finished, the Mutual Visibility problem is solved, and all the
robots are in the corners of the convex hull with red lights.

3.3 Special cases
There are two special cases to consider: n = 1, and the case where the initial configuration is
a line. The case n = 1 can be easily recognized by the only robot, since it does not see any
other robot and thus it can terminate.

If in the initial configuration all robots lie on a single line, we differentiate between the
robots that see only one other robot and the robots that see two other robots. If a robot ri

sees only one other robot rj , when ri is activated for the very first time it sets its light to
red and moves orthogonal to the line rirj for some arbitrary positive distance. When ri is
activated in future rounds and Hk(ri) is still a line segment, it can conclude that there are
only two robots and it does nothing until it sees rj set its light to red. Once rj sets its light
to red, ri terminates.

If a robot ri sees two other robots rj and rl, robot ri will be able to tell if Hk(ri) is a
line segment as follows. Robot ri will move orthogonal to line rjrl and set its light to red if
and only if it sees that the lights of rj and rl are set to red, as this indicates that both other

with each other (requiring a length of 2) while ensuring that they also do not collide with the corner
robots on the edge (adding a length of 0.5 per corner robot).

R.J. Alsaedi, J. Gudmundsson, and A. van Renssen 2:9

robots see only a single other robot, i.e., n = 3. Otherwise, moving the two extremal robots
of the initial configuration as described above ensures that the configuration is no longer a
line segment, allowing the SD and ID phase to solve the problem.

As these special cases add only a constant number of rounds to the running time and
do not influence the number of colors, we focus on the general case in the remainder of this
paper.

4 Analysis

We proceed to prove that our algorithm solves the Mutual Visibility problem in a linear
number of rounds, using only two colors and while avoiding collisions between the robots.

We start with some properties of the Side Depletion phase.

▶ Lemma 1. Given a configuration Ck and an edge e = v1v2 of Hk, if a robot ri ∈ e moves
away from e, it will move into the safe zone S(e).

Proof. We prove this lemma using proof techniques similar to those of Lemma 3 in [11].
Let v1 and v2 be the two corner robots that define e. If there is a single robot r ∈ e, r can
compute S(e) exactly and then move into S(e), proving the lemma. Consider the situation
when there are at least two side robots on e. Let r1 and r2 be the two robots on e that are
neighbors of v1 and v2, respectively. In the fully synchronous setting, both r1 and r2 move
from e in the same round. Consider only the move of r2 to S(e) (the move of r1 follows
similarly).

Robot r2 orders the robots it can see in clockwise order and let this ordering be
{v0, v, r2, v2, v3}, where v0 is the first robot non-collinear to r2 in the clockwise direction
with its light set to red, v is the robot that is collinear with r2 in the clockwise direction,
and v2 is the collinear robot in the counterclockwise direction with its light set to red, and
v3 is the first non-collinear robot in the counterclockwise direction with its light set to red.
Following the rules of Algorithm 5, r2 computes α = 180◦−∠v0vv2, β = 180◦−∠vv2v3, and
δ = min{α/4, β/4}. We note that since we calculate α by subtracting ∠v0vv2 from 180◦, α

may be smaller than the actual angle used to define S(e). Therefore, any point x in the safe
zone computed by r2 is inside the safe zone of e, and thus, r2 will move inside S(e). The
same holds for r1. The other robots on e between r1 and r2 do not move. ◀

▶ Lemma 2. Let ri and rj be the robots that are neighbors of endpoints v1 and v2 on edge e,
respectively. When there are p ≤ 2 side robots on e, ri and rj become corners and change
their light to red in the next round. When there are p > 2 side robots on e, ri and rj become
corners and change their light to red after which all the robots on e between ri and rj lie
inside the convex hull and become interior robots.

Proof. If p ≤ 2, ri and rj see only the corners and each other on e. Hence, both robots move
and by Lemma 1 they move into S(e). By moving ri and rj to S(e), they become corner
robots, as was also argued by Di Luna et al. [11].

When p > 2, a similar argument shows that both ri and rj become corners of Hk after
they move once and change their light to red in the next round. The other side robots on e

remain in their places and since Ck is not a line, moving ri and rj creates a hull that has
more than three sides, implying that the robots between ri and rj lie strictly inside this hull.
Thus, the other side robots become interior robots. ◀

▶ Lemma 3. Given a configuration C0 with q ≥ 1 side robots. After one round, all side
robots become either corner robots or interior robots.

CGT

2:10 The Mutual Visibility Problem for Fat Robots with Lights

Proof. The movements of side robots on different edges of H do not interfere with each other.
Therefore, we prove this lemma for a single edge e and the same argument applies for the
side robots on other edges of H.

When there is only one robot r on e, then r can compute S(e) exactly and move to a
point x ∈ S(e) as soon as it is activated. When there are two or more robots on e, two side
robots (the extreme ones on this edge) become corners in one round by Lemma 2. This
causes the other robots on e to become interior robots.

Since the robots on different edges do not influence each other and the moves on any
edge end in one round, this phase ends in one round. ◀

Now that there are no more side robots, we argue that the interior robots also eventually
become corners. We first show that the interior robots can determine whether the SD phase
has finished.

▶ Lemma 4. Given a configuration Ck and an edge e = v1v2 of Hk, no robot in the interior
of Hk moves to S(e) if there is a side robot on e.

Proof. If there are side robots in Hk, it is easy to see that every corner robot of Hk on an
edge that contains side robots sees at least one side robot. Similarly, when there are side
robots, interior robots can easily infer that the SD phase is not finished, and hence they do
not move to their respective S(e). ◀

Next, we argue in a series of lemmas that every interior robot will eventually become
a corner robot and it does not collide with any robots in doing so. Let CSD denote the
configuration of robots after the SD phase is finished and let HSD be the convex hull created
by CSD.

▶ Lemma 5. Let Ik be the set of interior robots in round k ∈ N+. In each round k until
Ik = ∅, if there is an edge of length at least 3, there is at least one robot in Ik for which the
set of line segments Q is not empty.

Proof. We note that every edge of the convex hull of the corner robots Hk is closest to some
interior robot(s). In particular, this holds for any edge of length at least 3. We note that this
set of interior robots forms a line, as they all have the same closest distance to the edge. Out
of these robots, by definition, the left and right extreme ones have the edge in their Q. ◀

▶ Lemma 6. Let CSD be the configuration after the SD phase ended and let e = v1v2 be the
edge of HSD closest to some interior robot ri. If the robot ri ∈ Ik moves, it moves inside the
safe zone S(e).

Proof. We prove this lemma using the proof technique similar to the proof of Lemma 3 in [11].
When there is a single closest interior robot r ∈ Ik, r can compute the region S(e) and move
to it, proving the lemma. Consider now the situation when there are at least two closest
interior robots. Let r1 and r2 be two of these robots. Since we work in the fully synchronous
setting, both r1 and r2 move at the same time. Consider only the move of r2 (the move of
r1 follows similarly). Robot r2 orders the corner robots that are visible to it according to
its local notion of clockwise direction and let this ordering be {v0, v1, v2, v3}, where v0 is a
corner robot preceding v1 in the clockwise direction and v3 is the corner robot following v2 in
clockwise direction. Following the rules of our algorithm, r2 computes α = 180◦ − ∠v0v1v2,
β = 180◦ −∠v1v2v3, and δ = min{α/4, β/4} (see Figure 2). We note that since we calculate
α by subtracting ∠v0v1v2 from 180◦, α is in fact a lower bound on the actual angle that
any robot in Ik at the same distance from edge e will compute. Let x′ be the nearest to e

R.J. Alsaedi, J. Gudmundsson, and A. van Renssen 2:11

in the safe zone outside the convex hull such that either ∠x′v1v2 = δ or ∠x′v2v3 = δ and
define x = x′ + r2m, where m is the intersection point of e. The same holds for r1. Our
algorithm guarantees that in every round at most two closest interior robots to an edge can
move through this edge. ◀

▶ Lemma 7. Given any initial configuration C0, no collisions of robots occur until Ik = ∅.

Proof. This lemma is proved by considering Algorithm 2. An interior robot ri with light off
does not collide with any other interior robot since the move of ri is perpendicular to the
closest edge r1r2 and there is sufficient space on the edge for the robot to move through it.
The robots moving through different edges of Hk do not collide since those robots are the
closest robots to those edges because the S(e) of different edges are disjoint. ◀

▶ Lemma 8. There exists an integer k ∈ N+ such that the robots in Ik closest to their eligible
edge are able to move outside the convex hull Hk and become corner robots with their light
set to red.

Proof. By Lemma 7, the robot ri does not collide with other interior robots while it tries
to move toward the edge v1v2 of Hk. Since there is no side robot after the first round by
Lemma 3, those cannot block ri’s movement. By Lemma 7, there is no collision for robot ri

while it passes e = v1v2 where v1 and v2 are the endpoints of the edge that ri passes through
to its computed point in S(e). Since the movements are rigid, ri reaches its computed point
in the safe zone once it moves and changes its color to red. ◀

▶ Lemma 9. Given any initial configuration C0, there exists an integer k ∈ N+ such that
Ik = ∅ in Ck and the corner robots do not move in any round k′ > k.

Proof. When Ik ̸= ∅ each corner robot sees at least one robot with light off. Therefore,
combining the results of Lemmas 5, 6, 7, and 8 with this observation, we have that, given
any C0, there is some round k ∈ N+ such that Ik = ∅.

Corner robots do not move after Ik = ∅, since they do not see robots with light off, thus
terminating. ◀

▶ Theorem 10. Given any initial configuration C0, there is some round k ∈ N+ such that
all robots lie on Hk and have their lights set to red.

Proof. Lemma 9 shows that there exists a round k such that there are no interior robots
left. Interior robots that moved to become corner robots changed their lights to red as soon
as they reached their corner positions. Furthermore, the interior robots move to the safe
zone where they by definition become corners. Since Lemma 9 guarantees that there are no
collisions, the robots occupy different positions of Hk and all their lights will be red. ◀

Next, we argue that the robots can determine when there are no interior robots left.

▶ Lemma 11. If there exists a robot with light off, there is at least one interior robot that is
visible to any corner robot ri.

Proof. If there is at least one interior robot, every corner robot can see some interior robot
(for example the one closest to it). By definition, every interior robot has its light off, proving
the lemma. ◀

▶ Lemma 12. Given a robot ri ∈ R with its light set to red and a round k ∈ N+, if all robots
in Ck(ri) have their light set to red, and no robot is in the interior of Hk(ri), then Ck does
not contain interior robots.

CGT

2:12 The Mutual Visibility Problem for Fat Robots with Lights

Proof. When all the robots in Ck(ri) have their light set to red, this means that there is no
robot with light off. Since any interior robot would have color off and by Lemma 11 at least
one of these robots would be visible to ri, this proves the lemma. ◀

We are now ready to prove that the Mutual Visibility problem is solvable using only
two colors. Let CID denote the configuration of robots after the ID phase is finished and let
HID be the convex hull created by CID.

▶ Theorem 13. The Mutual Visibility problem is solvable without collisions for unit disk
robots in the fully synchronous setting using two colors in the robots with lights model.

Proof. We have from Lemma 3 that from any initial non-collinear C0, we reach a configuration
CSD without side robots after one round, some becoming corner robots and some becoming
interior robots. Once the SD phase is over, Theorem 10 shows that the ID phase moves all
interior robots to become corner robots. We have from Lemma 12 that robots can locally
detect whether the ID phase is over and configuration CID is reached. By Lemma 7, no
collisions occur in the SD and ID phases.

Therefore, starting from any non-collinear configuration C0, all robots eventually become
corners of the convex hull, solving the Mutual Visibility problem without collisions.

It remains to show that starting from any initial collinear configuration C0 the robots
correctly evolve into some non-collinear configuration from which we can apply the above
analysis. If n ≤ 3, this can be shown through a simple case analysis: For n = 1, when the
only robot becomes active, it sees no other robot, changes its color to red and immediately
terminates. For n = 2, robot ri changes its color to red when it becomes active for the first
time and moves orthogonal to line rirj that connects it to the only other robot rj it sees in
C(ri). When ri later realizes that |C(ri)| is still 2 and rj .light = red, it simply terminates.
For n = 3, when ri realizes that both of its neighbors in C(ri) have light set to red and are
collinear with it, it moves orthogonal to that line and sets its light to red. The next time it
becomes active, it finds itself at one of the corners and simply terminates as it sees all the
other robots in the corners of the hull with light set to red.

For n ≥ 4, let a and b be the two robots that occupy the corners of the line segment H0
(i.e. the endpoint robots of H0). Nothing happens until a or b is activated, setting its light to
red, and moving orthogonal to H0. After a or b moves, when another robot becomes active,
it realizes that the configuration is not a line anymore and enters the normal execution of
our algorithm. It is easy to see that after the line segment H0 evolves into a polygonal shape,
it never reverts to being a line.

Finally, since our algorithm uses only two colors, the theorem follows. ◀

It remains to analyze the number of rounds needed by our algorithm.

▶ Lemma 14. After O(n) rounds, the convex hull has grown enough in size to allow all n

robots to become corners.

Proof. Since in every round all corner robots move a distance of 1 along the bisector of
their exterior angle, the length of the convex hull grows by at least 1 in every round. Note
that when a robot becomes a corner, it moves outside the current convex hull and thus, by
triangle inequality, extends the hull that way as well.

Hence, after at most 4n rounds the convex hull is long enough to ensure that there is
space for all interior robots: there are at most n edges of the convex hull and for each of
them to not be long enough, their total length is strictly less than 3n. Hence, by expanding
the convex hull by a total of 4n, we ensure that there is enough space for each of the less

R.J. Alsaedi, J. Gudmundsson, and A. van Renssen 2:13

than n interior robots of diameter 1. Expanding the convex hull a total of 4n takes O(n)
rounds, completing the proof. ◀

We note that for the above lemma the corner robots do not need to know n, as they can
simply keep moving until the algorithm finishes.

▶ Lemma 15. The Interior Depletion phase of the mutual visibility algorithm finishes in
O(n) rounds.

Proof. When an interior robot can move outside the convex hull to become a corner robot,
it needs at most a constant rounds to do so. During those rounds the robot becomes active,
checks its path while moving to the safe zone to become a corner robot, and changes its light
to red. There are fewer than n interior robots and by Lemma 5 at least one robot can move
when there is an edge of length at least 3. By Lemma 14 in O(n) rounds there are sufficient
long edges to allow the less than n interior robots to move through them. Therefore, the
Interior Depletion phase of the mutual visibility algorithm finishes in O(n) rounds. ◀

We now have the following theorem bounding the running time of our algorithm using
Lemmas 3 and 15 and Theorem 13.

▶ Theorem 16. Our algorithm solves the Mutual Visibility problem for unit disk robots
in O(n) rounds without collisions in the fully synchronous setting using two colors.

5 Concluding remarks

We studied the Mutual Visibility problem for a system of autonomous fat robots of unit
disk size in the robots with lights model. We described an algorithm for this problem that uses
two colors and works for fully synchronous computation of fat robots under rigid movements.
Our solution is optimal with respect to the number of colors used since even for point robots at
least two colors are required [20]. Also, our algorithm solves the Mutual Visibility problem
in O(n) rounds. For future work, it is interesting to extend our algorithm for non-rigid
movements of robots and also for semi-synchronous and asynchronous computations.

References
1 Chrysovalandis Agathangelou, Chryssis Georgiou, and Marios Mavronicolas. A distributed

algorithm for gathering many fat mobile robots in the plane. In Proceedings of the 2013
ACM Symposium on Principles of Distributed Computing, pages 250–259, 2013. URL: https:
//doi.org/10.1145/2484239.2484266.

2 Rusul J. Alsaedi, Joachim Gudmundsson, and André van Renssen. The mutual visibility
problem for fat robots. In Proceedings of the 18th Algorithms and Data Structures Symposium,
volume 14079 of Lecture Notes in Computer Science, pages 15–28, 2023. URL: https:
//doi.org/10.1007/978-3-031-38906-1_2.

3 Kálmán Bolla, Tamás Kovacs, and Gábor Fazekas. Gathering of fat robots with limited
visibility and without global navigation. In Proceedings of the 2012 International Symposium
on Swarm Intelligence and Differential Evolution, pages 30–38, 2012. URL: https://doi.org/
10.1007/978-3-642-29353-5_4.

4 Sruti Gan Chaudhuri and Krishnendu Mukhopadhyaya. Leader election and gathering for
asynchronous fat robots without common chirality. Journal of Discrete Algorithms, 33:171–192,
2015. URL: https://doi.org/10.1016/j.jda.2015.04.001.

5 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed comput-
ing by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829–879, 2012. URL:
https://doi.org/10.1137/100796534.

CGT

https://doi.org/10.1145/2484239.2484266
https://doi.org/10.1145/2484239.2484266
https://doi.org/10.1007/978-3-031-38906-1_2
https://doi.org/10.1007/978-3-031-38906-1_2
https://doi.org/10.1007/978-3-642-29353-5_4
https://doi.org/10.1007/978-3-642-29353-5_4
https://doi.org/10.1016/j.jda.2015.04.001
https://doi.org/10.1137/100796534

2:14 The Mutual Visibility Problem for Fat Robots with Lights

6 Reuven Cohen and David Peleg. Local spreading algorithms for autonomous robot systems.
Theoretical Computer Science, 399(1-2):71–82, 2008. URL: https://doi.org/10.1016/j.tcs.
2008.02.007.

7 Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Martina Hüllmann, Barbara
Kempkes, Alexander Klaas, Peter Kling, Sven Kurras, Marcus Märtens, Friedhelm Meyer auf
der Heide, Christoph Raupach, Kamil Swierkot, Daniel Warner, Christoph Weddemann, and
Daniel Wonisch. Collisionless gathering of robots with an extent. In Proceedings of the 37th
Conference on Current Trends in Theory and Practice of Computer Science, pages 178–189,
2011. URL: https://doi.org/10.1007/978-3-642-18381-2_15.

8 Jurek Czyzowicz, Leszek Gasieniec, and Andrzej Pelc. Gathering few fat mobile robots in the
plane. Theoretical Computer Science, 410(6-7):481–499, 2009. URL: https://doi.org/10.
1016/j.tcs.2008.10.005.

9 Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theoretical Computer Science, 609:171–184, 2016.
URL: https://doi.org/10.1016/j.tcs.2015.09.018.

10 Giuseppe Antonio Di Luna, Paola Flocchini, S Gan Chaudhuri, Federico Poloni, Nicola Santoro,
and Giovanni Viglietta. Mutual visibility by luminous robots without collisions. Information
and Computation, 254:392–418, 2017. URL: https://doi.org/10.1016/j.ic.2016.09.005.

11 Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Nicola Santoro, and
Giovanni Viglietta. Robots with lights: Overcoming obstructed visibility without collid-
ing. In Proceedings of the 16th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, pages 150–164, 2014. URL: https://doi.org/10.1007/
978-3-319-11764-5_11.

12 Giuseppe Antonio Di Luna, Paola Flocchini, Federico Poloni, Nicola Santoro, and Gio-
vanni Viglietta. The mutual visibility problem for oblivious robots. In Proceedings of the
26th Canadian Conference on Computational Geometry, 2014. URL: https://www.cccg.ca/
proceedings/2014/papers/paper51.pdf.

13 Ayan Dutta, Sruti Gan Chaudhuri, Suparno Datta, and Krishnendu Mukhopadhyaya. Circle
formation by asynchronous fat robots with limited visibility. In Proceedings of the 8th
International Conference on Distributed Computing and Internet Technology, pages 83–93,
2012. URL: https://doi.org/10.1007/978-3-642-28073-3_8.

14 Paola Flocchini. Computations by luminous robots. In Proceedings of the 14th International
Conference on Ad Hoc Networks and Wireless, pages 238–252, 2015. URL: https://doi.org/
10.1007/978-3-319-19662-6_17.

15 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by oblivious
mobile robots. Synthesis Lectures on Distributed Computing Theory, 3(2):1–185, 2012. URL:
https://doi.org/10.1007/978-3-031-02008-7.

16 David Peleg. Distributed coordination algorithms for mobile robot swarms: New directions
and challenges. In Proceedings of the 7th International Workshop on Distributed Computing,
pages 1–12, 2005. URL: https://doi.org/10.1007/11603771_1.

17 Pavan Poudel, Gokarna Sharma, and Aisha Aljohani. Sublinear-time mutual visibility for fat
oblivious robots. In Proceedings of the 20th International Conference on Distributed Computing
and Networking, pages 238–247, 2019. URL: https://doi.org/10.1145/3288599.3288602.

18 Gokarna Sharma, Rusul Alsaedi, Costas Busch, and Supratik Mukhopadhyay. The complete
visibility problem for fat robots with lights. In Proceedings of the 19th International Conference
on Distributed Computing and Networking, pages 1–4, 2018. URL: https://doi.org/10.1145/
3154273.3154319.

19 Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. Bounds on mutual visibility
algorithms. In Proceedings of the 27th Canadian Conference on Computational Geometry,
pages 268–274, 2015.

20 Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. Mutual visibility with an
optimal number of colors. In Proceedings of the 11th International Symposium on Algorithms

https://doi.org/10.1016/j.tcs.2008.02.007
https://doi.org/10.1016/j.tcs.2008.02.007
https://doi.org/10.1007/978-3-642-18381-2_15
https://doi.org/10.1016/j.tcs.2008.10.005
https://doi.org/10.1016/j.tcs.2008.10.005
https://doi.org/10.1016/j.tcs.2015.09.018
https://doi.org/10.1016/j.ic.2016.09.005
https://doi.org/10.1007/978-3-319-11764-5_11
https://doi.org/10.1007/978-3-319-11764-5_11
https://www.cccg.ca/proceedings/2014/papers/paper51.pdf
https://www.cccg.ca/proceedings/2014/papers/paper51.pdf
https://doi.org/10.1007/978-3-642-28073-3_8
https://doi.org/10.1007/978-3-319-19662-6_17
https://doi.org/10.1007/978-3-319-19662-6_17
https://doi.org/10.1007/978-3-031-02008-7
https://doi.org/10.1007/11603771_1
https://doi.org/10.1145/3288599.3288602
https://doi.org/10.1145/3154273.3154319
https://doi.org/10.1145/3154273.3154319

R.J. Alsaedi, J. Gudmundsson, and A. van Renssen 2:15

and Experiments for Wireless Sensor Networks, pages 196–210, 2015. URL: https://doi.
org/10.1007/978-3-319-28472-9_15.

21 Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. How to make fat autonomous
robots see all others fast? In Proceedings of the 2018 IEEE International Conference on
Robotics and Automation, pages 3730–3735, 2018. URL: https://doi.org/10.1109/ICRA.
2018.8460899.

22 Gokarna Sharma, Costas Busch, Supratik Mukhopadhyay, and Charles Malveaux. Tight
analysis of a collisionless robot gathering algorithm. ACM Transactions on Autonomous and
Adaptive Systems, 12:1–20, 2017. URL: https://doi.org/10.1145/3056460.

23 Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L Trahan. Constant-time com-
plete visibility for asynchronous robots with lights. In Proceedings of the 19th International
Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 265–281, 2017.
URL: https://doi.org/10.1007/978-3-319-69084-1_18.

24 Ramachandran Vaidyanathan, Costas Busch, Jerry L. Trahan, Gokarna Sharma, and Suresh
Rai. Logarithmic-time complete visibility for robots with lights. In Proceedings of the 2015
IEEE International Parallel and Distributed Processing Symposium, pages 375–384, 2015. URL:
https://doi.org/10.1109/IPDPS.2015.52.

A Pseudocode

Algorithm 1 Mutual Visibility algorithm

1 // Look-Compute-Move cycle for robot ri of unit disk size
2 Ck(ri)← configuration Ck for robot ri (including ri);
3 Hk(ri)← convex hull of the positions of the robots in Ck(ri);
4 if |Ck(ri)| = 1 then Terminate;
5 else if Hk(ri) is a line segment then
6 if |Ck(ri)| = 2 then
7 Let rj ∈ Ck(ri);
8 if ri.light = Off then
9 Move orthogonal to line ←→rirj by any non-zero distance;

10 ri.light← Red;
11 else if rj .light = Red then
12 ri.light = Red;
13 Terminate;
14 else if |Ck(ri)| = 3 then
15 Let rj , rl ∈ Ck(ri);
16 if ri.light = Off ∧ rj .light = Red ∧ rl.light = Red then
17 Move orthogonal to line ←→rjrl by any non-zero distance;
18 ri.light← Red;
19 else if ri is a corner robot of Hk(ri) then Corner(ri,Ck(ri),Hk(ri));
20 else if ri is an interior robot of Hk(ri) then Interior(ri,Ck(ri),Hk(ri));
21 else if ri is a side robot of Hk(ri) then Side(ri,Ck(ri),Hk(ri));

CGT

https://doi.org/10.1007/978-3-319-28472-9_15
https://doi.org/10.1007/978-3-319-28472-9_15
https://doi.org/10.1109/ICRA.2018.8460899
https://doi.org/10.1109/ICRA.2018.8460899
https://doi.org/10.1145/3056460
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1109/IPDPS.2015.52

2:16 The Mutual Visibility Problem for Fat Robots with Lights

Algorithm 2 Interior(ri,Ck(ri),Hk(ri))

1 if ri.light = Off then
2 Order the robots in Hk(ri) starting from any arbitrary robot v1 in the clockwise order so that

T = {v1, . . . , vlast, v1}, where v1 is the first robot and vlast is the last robot;
3 Let c, d be any pair of two consecutive robots in T with c.light = Red and d.light = Red;
4 Let HPcd be the half-plane defined by line parallel to

←→
cd that passes through ri such that c, d

are in HPcd;
5 Q← set of line segments cd such that:
6 (a) the triangle ri, c, d does not contain (neither inside nor on its edges) any other robot

of Ck(ri), and
7 (b) there is no robot in edge cd, and
8 (c) there is no robot in Ck(ri)\Hk(ri) closer to edge cd than ri, and
9 (d) there are no two robots with equal distance to cd appearing counterclockwise and

clockwise of ri with respect to the local coordinate system of ri, and
10 (e) the length of cd is at least 3;
11 if Q is not empty then
12 u1u2 ← the line segment in Q between two robots u1, u2 that is closest to ri;
13 if there is no other robot with light Off that is at equal distance to u1u2 then
14 m← midpoint of u1u2;
15 L← line perpendicular to u1u2 passing through its midpoint m;
16 Order the robots in the counterclockwise order of ri (with respect to the local

coordinate system of ri) such that the order is Ti = {v1, v2, v3, v4};
17 Compute angles α = 180◦ − ∠v4v3v2 and β = 180◦ − ∠v1v2v3, and set

δ = min{α/4, β/4};
18 Compute a point x′ such that ∠x′v3v2 = δ and a point x′′ such that ∠x′′v2v3 = δ;
19 L(rim)← line segment connecting ri and m;
20 x = x′ + L(rim), where x′ is the nearest point to e in the safe zone outside the

convex hull;
21 Move(ri,Ck(ri),Hk(ri), u1, u2, x);
22 else if there exists a robot in the clockwise direction of ri (with respect to the local

coordinate system of ri) with light Off that is at equal distance to u1u2 then
23 m← point in u1u2 at length(u1u2)

3 from endpoint u1;
24 L← line perpendicular to u1u2 passing through the point m;
25 Order the robots in the counterclockwise order of ri (with respect to the local

coordinate system of ri) such that the order is Ti = {v1, v2, v3, v4};
26 Compute angles α = 180◦ − ∠v4v3v2 and β = 180◦ − ∠v1v2v3, and set

δ = min{α/4, β/4};
27 L(rim)← line segment connecting ri and m;
28 Compute a point x′ such that ∠x′v3v2 = δ and a point x′′ such that ∠x′′v2v3 = δ;
29 x = x′ + L(rim), where x′ is the nearest point to e in the safe zone outside the

convex hull;
30 Move(ri,Ck(ri),Hk(ri), u1, u2, x);
31 else if there exists a robot in the counterclockwise direction of ri (with respect to the

local coordinate system of ri) with light Off that is at equal distance to u1u2 then
32 m← point in u1u2 at length(u1u2)

3 from endpoint u2;
33 L← line perpendicular to u1u2 passing through the point m;
34 Order the robots in the counterclockwise order of ri (with respect to the local

coordinate system of ri) such that the order is Ti = {v1, v2, v3, v4};
35 L(rim)← line segment connecting ri and m;
36 Compute angles α = 180◦ − ∠v4v3v2 and β = 180◦ − ∠v1v2v3, and set

δ = min{α/4, β/4};
37 Compute a point x′ such that ∠x′v3v2 = δ and a point x′′ such that ∠x′′v2v3 = δ;
38 x = x′ + L(rim), where x′ is the nearest point to e in the safe zone outside the

convex hull;
39 Move(ri,Ck(ri),Hk(ri), u1, u2, x);

R.J. Alsaedi, J. Gudmundsson, and A. van Renssen 2:17

Algorithm 3 Corner(ri,Ck(ri),Hk(ri))

1 Move ri distance 1 along the angle bisector of its neighbors on Ck(ri) in the direction
that does not intersect the interior of Ck(ri);

2 if ri.light = Off then ri.light← Red;
3 else if ∀r ∈ Ck(ri), r.light = Red then Terminate;

Algorithm 4 Move(ri,Ck(ri),Hk(ri), u1, u2, x)

1 Lrix ← line segment connecting ri and x;
2 L′

rix, L′′
rix ← lines parallel to Lrix at distance 1/2 on either side of Lrix towards u1u2;

3 if L′
rix and L′′

rix share no point occupied by any other robot then
4 Move to point x in the safe zone;
5 ri.light← Red;

Algorithm 5 Side(ri,Ck(ri),Hk(ri))

1 if at least one neighbor of ri in the edge e it belongs to has light Red then
2 Order the robots in the counterclockwise order of ri (with respect to the local

coordinate system of ri) such that the order is Ti = {v3, v2, ri, r, v0}, where v3 is
the first robot non-collinear to ri in the clockwise direction of ri with v3.light =
Red, v2 is the robot that is collinear with ri in the clockwise direction of ri, and
r is the collinear robot in the counterclockwise direction of ri, and v0 is the first
non-collinear robot to ri in the counterclockwise direction of ri with v0.light =
Red;

3 Compute angles α = 180◦ − ∠v0rri and β = 180◦ − ∠riv2v3, and set
δ = min{α/4, β/4};

4 Compute a points x′ and x′′ such that ∠x′v2ri = δ and ∠x′′rri = δ and rix
′ and

rix
′′ are perpendicular to e;

5 x← x′ or x′′ whichever is nearest to e;
6 Move perpendicular to e with destination x;
7 ri.light← Red;

CGT

	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Preliminaries
	3 The mutual visibility algorithm
	3.1 The side depletion phase
	3.2 The interior depletion phase
	3.3 Special cases

	4 Analysis
	5 Concluding remarks
	A Pseudocode

