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—— Abstract

We provide a linear time algorithm to determine the flip distance between two plane spanning paths

on a point set in convex position. At the same time, we show that the happy edge property does not
hold in this setting. This has to be seen in contrast to several results for reconfiguration problems
where the absence of the happy edge property implies algorithmic hardness of the flip distance
problem. Further, we show that our algorithm can be adapted for (1) compatible flips (2) local flips
and (3) flips for plane spanning paths in simple polygons.
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1 Introduction

Let S be a finite point set in the plane in general position, that is, no three points lie on a
common line. We call S a convez point set if no point of S lies in the interior of the convex
hull of S. For a convex point set with n vertices we label the points vg,...,v,_1 in clockwise
order, starting with an arbitrary vertex. A plane straight-line drawing of a graph on S is a
graph with vertex set S and whose edges are straight line segments between pairs of points
of S such that no two edges intersect, except at a common endpoint. Throughout this paper
we will refer to graphs and their drawings interchangeably.

Flips in plane spanning paths. A plane spanning path (or in the following sometimes just
path) on a point set S is a plane graph with |S| — 1 edges that is cycle-free, and in which
every vertex has degree at most 2. A flip is an operation that removes one edge from a
plane spanning path and adds another edge such that the resulting structure is again a plane
spanning path. With this notion of a flip we can define the flip graph as an abstract graph
that has as vertex set the set of all plane spanning paths on .S. Two vertices of the flip graph
are connected by an edge if and only if their corresponding paths can be transformed into
one another via a single flip. Given an initial plane spanning path P;, and a target path P,
on S, a flip sequence from Py, to P, is a sequence of plane spanning paths P;, = Py, P,
...y, P = P4, such that two consecutive paths differ only by a flip. Equivalently, a flip
sequence can be described as a path from P;, to P, in the flip graph. The length of the flip
sequence is the number k of flips to transform P;, into Pi,-. The flip distance between P,
and Py, is the minimum k& for which a flip sequence from P;, to Pi,, of length k exists.
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A flip sequence that realizes this minimum will be called a minimum flip sequence. Again, in
the notion of a flip graph, minimum flip sequences correspond to shortest paths in the flip
graph and the flip distance denotes the length of such a shortest path.

(2) (b) (©)

Figure 1 Flips in plane spanning paths: (a) Type 1 flip (b) Type 2 flip (¢) Type 3 flip

In [3] a characterization of flips in plane spanning paths into three types is given. See
Figure 1 for an illustration. Consider a path P = pi,pa,...,p, where the points are
given in order of traversal by P. A flip of Type I removes an edge (p;—1,p;) and adds
an edge (p1,p;) or (pi—1,pn) if they do not cross any other edge. This results in a new
path, P;—1,...,P1,Pir-«yPn O P1y-- -y Di—1,Pn,-- -, Pi, respectively. A flip of Type 2 adds the
edge (p1,pn) assuming this edge does not cross any of the already existing edges. Afterwards,
an arbitrary edge (p;—1,p;) from the original path can be removed. Note that adding and
removing consecutive edges when closing a cycle can be interpreted as both a Type 1 flip
and a Type 2 flip. For simplicity of notation we will count such flips as Type 2 flips. A
flip of Type 3 also adds the edge (p1,p,) but now it is assumed to intersect exactly one
edge (p;—1,p;) in P which is then removed within this flip operation.

Related work. There are three central questions about reconfiguration problems that
are considered in the literature:

(1) Is the flip graph connected, that is, can we transform any configuration into any other
via our given flip operation?

(2) What is the diameter of the flip graph, that is, how many flips does it take in the worst
case to flip one configuration into another configuration?

(3) What is the complexity of computing minimum flip sequences between a given pair of
configurations?

It is an interesting open problem, whether every plane spanning path of a given point
set can be transformed into any other spanning path on the same point set. For the special
cases of convex point sets [5], wheel sets, generalized double circles [3], and point sets with
at most two convex layers [17], it has been shown that we can always flip from one path
to another. In [17] the existence of a large connected component in the flip graph of plane
spanning paths on any point set - called suffix-independent paths - is shown. Notably, all the
currently known connectivity results do not rely on any Type 3 flips. In the case of convex
point sets the diameter of the flip graph is known to be exactly 2n — 6 for n > 4 [12].

A related flip operation is given by flips in plane spanning trees. For plane spanning
trees the flip graph is known to be connected with radius n — 2 [6, 7]. There have been
several results with regard to bounds on the diameter of the flip graph when the trees are on
convex point sets [1, 7, 9, 10, 11, 14]. The currently best known bounds of the diameter are
1 — O(1) as a lower bound and 2 — 3 as an upper bound [7]. For more related results on
flips in other planar graph structures we refer to the survey by Bose and Hurtado [8].
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Happy edges. Happy edges are edges that lie in both, the initial configuration and the
target configuration of a graph reconfiguration problem. The so-called happy edge property
says that there always exists a minimum flip sequence between two configurations such that
all happy edges are contained in all configurations of the flip sequence. This implies that
a happy edge is never flipped in such a sequence. The happy edge property may or may
not hold for certain reconfiguration problems. Whether the happy edge property holds, can
be a good indication for the complexity of a reconfiguration problem. For example, for
triangulations of simple polygons [4] and general point sets [18, 20] finding minimum flip
sequences is NP-hard and the gadgets in the proofs are built around conterexamples to the
happy edge property. Conversely, the happy edge property holds for plane perfect matchings
of convex point sets and a minimum flip sequence can be found in polynomial time [15]. On
the other hand, the happy edge property holds for triangulations of convex polygons [21],
but the question about the complexity of finding minimum flip sequences is still open.

Our contributions. In this paper we show that the happy edge property does not hold for
plane spanning paths of convex point sets. This adds to the already known counterexamples
in point sets in general position [13]. Simultaneously, we provide an approach for computing

the flip distance between pairs of plane spanning paths on convex point sets in linear time.

Interestingly, this is in contrast to all the previously mentioned results where the absence of
the happy edge property implied hardness of finding the flip distance.

Further we show that our observations carry over to some variants of the problem. Our
characterizations also yield a linear time algorithm if we (1) restrict the flips to be compatible,
that is, we do not allow crossing Type 3 flips to happen; (2) make the problem more local by
only allowing flips in which the removed edge and the added edge share an endpoint. This
can also be interpreted as assigning different costs to Type 2 flips based on how non-local
they are; or (3) consider paths in simple polygons.

2 Counterexample to the happy edge property

Type 2

T
e

Type 2

Type 2

Figure 2 Flip graph of paths on four points in convex position with a counterexample to the
happy edge property. Indicated are the different types of flips and the initial and target paths.
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In Figure 2 we show the flip graph of all eight plane spanning paths on four points in
convex position. The initial path P;, and the target path P;,, are marked. Both paths share
a diagonal, but no other path contains that particular diagonal. Moreover, the two paths
cannot be directly transformed into one another via one flip. Therefore, this pair of paths
provides a counterexample to the happy edge property for minimum flip sequences between
plane spanning paths in convex point sets. Actually, in this example there is no flip sequence
from P;, to Pi,, at all that does not need to flip the happy edge.

3 Basics on flips in paths

In this section we show some basic relations for flips between plane paths. Due to visibility
constraints Type 2 flips can only happen when all edges of the current path lie on the convex
hull. For Type 1 flips we obtain the following result.

» Lemma 1. Type 1 flips either remove a diagonal or add a diagonal, but not both at the
same time. If diagonals exists, we can always lower the number of diagonals by one Type 1

flip.

Proof. Without loss of generality we say that we flip from a path P;, to a path P;,, where v
is the end vertex of P;, that is involved in the Type 1 flip. See Figure 3 for an illustration.
We distinguish between two cases, depending on which type of edge is added during the flip.

Case 1: A diagonal d = (v,v,) is added. Note that d is not crossed by an edge of P;, as
we have a Type 1 flip. Since P;, is connected there has to exist a subpath of P;,, consisting
of edges on the convex hull that connects v with v,. Thus, adding d to P;, results in a cycle
that consists of d and convex hull edges. Consequently, a convex hull edge is removed in the
flip. Therefore, Py, contains one diagonal more than Pj,.

Case 2: A convex hull edge is added. We know that not all edges can be located on the
convex hull, otherwise the only flip that can add a convex hull edge is a Type 2 flip, which
we excluded by assumption. Therefore, there exist diagonals in P;,. The only way, how a
diagonal d = (vg, vp) can be visible from an end vertex v of P, is, if d is the first diagonal
to appear when traversing P;, starting from v. All edges of P;, that appear before d when
traversing P;, are convex hull edges.

Without loss of generality, assume v, is reached before v, when traversing P, starting
from v. The only convex hull edge that contains v which can be added to Py, is (v,vp).
Adding this edge results in removing the diagonal d since it is the unique next edge along the
cycle that is closed within P, when adding (v,v;). Therefore, Py, contains one diagonal
less than P;,,.

Va

Case 1 Case 2 Type 3

Figure 3 Case 1 (left): Adding a diagonal (fat), removing a convex hull edge (dashed). Case 2
(middle): Adding a convex hull edge (fat), removing a diagonal (dashed). For a Type 3 flip (right),
we need all edges but one diagonal to be on the convex hull.
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We further point out that we can always add a convex hull edge as described in Case 2,
which allows us to perform flip sequences that strictly decrease the number of diagonals in
every flip. <

The intuition behind Lemma 1 can be seen in Figure 3: Removing the unique diagonal d
that is visible from an end vertex v by adding a convex hull edge between v and the vertex v
incident to d (left), adding a diagonal d by removing a convex hull edge (middle).

A remaining possibility to change the number of diagonals is to perform a Type 3 flip that
exchanges the only existing diagonal with a diagonal that is rotated by one vertex (Figure 3,
right). Observe that Type 3 flips need a special set-up. The diagonals that are involved in
the flip need to be the only diagonals of their respective paths. Also, the convex hull edges
need to be the same for both paths, that is, before and after the flip. We will say that the
convex hull edges coincide.

Uj fl

Bad happy diagonal Good happy diagonal

Figure 4 Bad happy diagonal d with edges emanating to different sides in different paths (left),
and good happy diagonal d with edges emanating to the same side in different paths (right).

Let d = (v;,v;) be a happy edge that is a diagonal. Note that d splits the convex point
set into two parts and that the two edges adjacent to d are contained in one of the parts
each. We say that in such a case an edge emanates to the part it its contained in. Let d
be adjacent to e; at v; and fi at v; in the initial path F;,, and to ez at v; and fy at v; in
the target path Pi,.. We call d a good happy diagonal if e; and e; emanate to the same
side of d, that is, the second vertices of e; and ey are either both in {v; 1, vj,l} or both in
{vj41,vi—1} where the vertices are considered cyclically. Otherwise, we call d a bad happy
diagonal (if e; and ey emanate to different sides). See Figure 4 for an illustration.

» Lemma 2. Consider an initial path P;, and a target path Pig,.
(a) For every flip sequence from Py, to Py, any bad happy diagonal needs to be removed.
(b) For every subpath R of consecutive happy edges that contains at least one good happy
diagonal there exists a flip sequence from P, to P4, that preserves all edges of R.

Proof. Let d be a bad happy diagonal, where e; and f; are its adjacent edges. For (a)
observe that we cannot flip edges e; and f; in one step, so we need to flip d.

A= O0-00-Q0-Q0

Figure 5 Illustration of Lemma 2(b): A flip sequence that preserves a good happy diagonal d.
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For (b) start with P;,,, pick one end vertex of P;,, and perform flips that remove diagonals
until the next diagonal that is visible from the current endvertex lies in R. Then, repeat the
process for the other endvertex of P;,. The resulting path P’ will then consist of R and two
(possibly empty) subpaths of convex hull edges. Do the same for P, to obtain a path P”.
Since R contains a good happy diagonal and there are only two ways how the subpath of
convex hull edges may look like, we get P’ = P”. The required flip sequence from P;, to Py,
consists of the flips from P;,, to P’ and the flips from P, to P” in reverse order. For an
example of such a flip sequence, see Figure 5. |

We point out the reason for studying diagonals in such detail. If we know all the diagonals
of a path and the way the incident edges emanate from them, then we can already construct
the entire path. As seen in Figure 6, there is at most one way to complete the path between
two consecutive diagonals. Also note that if a subpath of happy edges of length at least 2
contains a diagonal, the diagonal has to be a good happy diagonal. There can, however,
exist good and bad happy edges within the same path, if they belong to different consecutive
subpaths of happy edges. These observations together simplify the problem of flipping an
initial path into a target path to simply flipping all the diagonals with their emanating edges
into the right place.

Figure 6 Assume the two fat edges are consecutive diagonals that appear consecutively on the
path, that is, no other diagonal appears between them. The consecutive diagonals and emanating
edges in the left path can be completed to a path, whereas the ones in the right path cannot be
completed without adding another diagonal.

4 Characterization of minimum flip sequences

Based on the structure of good happy diagonals and convex hull edges of the initial path
and the target path, we provide a characterization of pairs of paths into four categories. We
derive lower bounds on the number of flips and argue that for each category there exists a
flip sequence that makes exactly this number of flips, thus providing a minimal flip sequence.
Later, in Section 5, we will show how to identify the four cases in linear time.

In the upcoming theorem, we use the following strategy. We start by strictly decreasing
the number of diagonals in every flip as described in Lemma 1 until only one subpath of
happy edges or a single diagonal is left. In the latter case, we have two options: (a) remove
the last diagonal via a Type 3 flip and directly add a diagonal from the target path (We call
this a direct Type 3 flip); otherwise (b) remove the diagonal via another Type 1 flip. After
the flip in Case (b) all edges of the path are on the convex hull. If the gap does not coincide
with a gap in the target path, then we perform a Type 2 flip.

Finally we use a reversed flip sequence to the one described in Lemma 1 to add all the
diagonals from the target path.
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» Theorem 3. Let P, and P, be two plane spanning paths for the same convex point
set. Let k and | denote the number of diagonals of Py, and P, respectively. Then the flip
distance between Py, and Py, is described by the following cases.
Case 1: If good happy diagonals exist, then let m > 1 be the mazimum number of
good happy diagonals in a subpath of consecutive happy edges. The flip distance is then
k+1—2m.
Case 2: If no good happy diagonal exists, then we distinguish three cases

Case 2a: If there exists a pair of diagonals dy € Py, do € Py, that can be exchanged
for one another by a direct Type 3 flip, then the flip distance is k+1— 1.

Case 2b: If no direct Type 3 flip (according to Case 2a) can be performed and if
the diagonals can be flipped to convex hull edges in both, the initial and target path, such
that the paths after flipping all diagonals coincide, the flip distance is k -+ [.

Case 2c: Otherwise the flip distance is k+ 1+ 1.

» Remark 4. Regarding Case 2b: If a path P does not contain the convex hull edge (v;, v;iy1),
we say that P has a gap g in the convex hull at (v;,v;41). If g is a gap of both paths, P,
and P, we say that P;, and P, have a common gap in the convex hull at g. Observe that
by removing diagonals we can flip a path P into a path that contains all convex hull edges
except for the gap ¢ if and only if g is a gap of P. This can be done by performing flips that
add convex hull edges incident to each end vertex while removing diagonals until the next
added convex hull edge would lie in g. For an intuitive example see Figure 7.

Figure 7 Illustration of Remark 4. In every step the convex hull edge to be added is indicated
via a dashed line. First, diagonals to the left of the gap g are removed by the left end vertex of the
path. Afterwards, the diagonal to the right gets removed by the right end vertex of the path.

Proof of Theorem 3. For a visualization of the different cases, see Figure 8.

Case 1: Consider a decomposition of the point set where points belong to the same
component if and only if they lie on the same side of every good happy diagonal. Then, there
are exactly two components that each contain one of the endpoints of the path. Therefore,
to remove and add edges in components that do not contain endpoints, we need to remove
all good happy diagonals on one side of this component. From this, we conclude that we
need to remove the good happy diagonals from all but one subpath of happy edges. Let mp
denote the number of good happy diagonals in a subpath of happy edges R.

By Lemma 1 and Lemma 2, removing all diagonals apart from the ones in R takes
at least k — mp flips and can be done in that number of flips. Similarly, adding all the
new diagonals takes | — mp flips. Therefore, there is a flip sequence from P, to P,
that preserves R with k + [ — 2mp flips. The length of the minimum flip sequence is
therefore k + [ — 2m by the choice of m and it is attained by applying the flips from the
proof of Lemma 2.

Case 2a: The only way to exchange more than one diagonal at once is by performing a
Type 3 flip. If we want to exchange one diagonal from P;, directly with a diagonal in P,
all the flips leading up to the Type 3 flip need to remove the k — 1 diagonals (that are not

2:7
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involved in the Type 3 flip) from the initial path. Similarly, all the flips that occur after the
Type 3 flip add the [ — 1 diagonals of the target path that are not involved in the Type 3
flip. Further, the two subpaths of convex hull edges need to coincide between the paths
before and after the Type 3 flip, see Figure 3 (right). Therefore, the subpaths of convex
hull edges are already correctly aligned after the Type 3 flip. This shows that k 4+ — 1 flips
are necessary and sufficient in case a direct Type 3 flip can occur: k — 1 flips for removing
diagonals from P;,, one Type 3 flip and | — 1 flips to add diagonals to get Pjq;--

Case 2b: If no direct Type 3 flip can be set up, it follows from Lemma 1 that k flips are
necessary and sufficient to remove all diagonals from the initial path, and similarly [ flips to
add all the diagonals of the new path. Since the diagonals can be removed in a way that
there is a common gap in the convex hull, k + [ flips are indeed necessary and sufficient.

Pz n

Rnt.l Pi,nt.Za Pmt?b Rnt,Zr

Figure 8 Visualization of Theorem 3: Top row: the initial path P;, with k& = 5 diagonals. Second
row: target paths where dashed lines show the initial path. The cases 1, 2a, 2b and 2c¢ occur from
left to right. In Case 1 the consecutive sequence with the most good happy edges is marked in red
and has length 2. Pi4r 1 has | = 9 diagonals and Theorem 3 yields a flip distance of 10. In Case 2a
the two edges involved in a Type 3 flip are marked red. Piqr 2, has | = 6 diagonals and Theorem 3
yields a flip distance of 10. For Case 2b we labeled the common gap g in the convex hull. Piqr 2, has
| = 4 diagonals and the flip distance is 9. Observe that for Case 2c, none of the other cases occur.
Since Priqr,2c has [ = 4 diagonals, the flip distance is 10. Bottom row: intermediate configurations
for the corresponding cases.

Case 2c: If neither Case 2a nor Case 2b hold, so in particular P;,, and P4, do not have
a common gap in the convex hull, it is indeed necessary to remove all diagonals, realign the
convex hull and add all diagonals to get the new path. So k& 4+ [ + 1 flips are necessary.

To show optimality also for Case 2c assume we could start adding diagonals from the
target path before removing all diagonals from the initial path and realigning the path along
the convex hull. We add the first diagonal d = (v;,v;) € P4, in the step from P, to Py;.
Assume v; was the end vertex in the previous step. By the assumption of Case 2c, v; is
incident to two convex hull edges in P;;, U Py, One of them, say ey, is in Py, \ Pyp, otherwise
there would not be an isolated vertex at v;. Since v; has degree at most two in P, the
other convex hull edge, say es, has to be in Py, \ Piar. Since we didn’t remove any convex
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hull edge from P;, prior to that flip, the edges incident to v;, e; and e; emanate to different
sides of d in P41 and P,,-. Therefore, d is a bad happy diagonal and has to be removed by
Lemma 2a. <

5 A linear time approach

We show that for a given pair of paths the classification into the four categories derived in
Theorem 3 can be done in linear time. During this classification, we collect all the required
information so that for each category we can then argue how the flips in a minimum flip
sequence can be provided in linear time.

» Theorem 5. The flip distance between two plane spanning paths in convex point sets can
be determined in O(n) time and space.

Proof. Recall that we label the vertices vg,...,v,—1 in clockwise order, beginning at an
arbitrary but fixed vertex. For both given paths, we create an array of size n, say I[0,...,n—1]
for the initial path, and T'[0,...,n — 1] for the target path. For each array an entry at index i
contains the indices of the two (predecessor and successor, respectively) vertices the vertex v;
is connected to in the respective path. For the end vertices of the two paths we only store
one index each. These arrays can be initialized in linear time by traversing the two path
and storing the indices. At the same time we compute the numbers k and [ of diagonals in
the initial and target path. This can simply be done by the observation that the vertices of
diagonals do have non-consecutive indices, where the indices are taken modulo n.

To see if Case 1 occurs we check for the existence of good happy diagonals and also
compute the number of good happy diagonals that appear in a consecutive sequence of happy
edges. For this, traverse the edges of the initial path from one end to the other. For an edge
e = (v;,v;) where w.l.o.g. i < j we check in constant time if it is happy by checking if j is
contained in the two indices of T'[7]. If this is the case we have a happy diagonal if ¢ and j are
not consecutive, taken modulo n. For a happy diagonal (v;,v;) we then check if it is good.
Let v; and vy be the neighbors (# v;) of v; in the initial and target path, respectively. The
indices k and &’ can be obtained in constant time from I[j] and T'[j]. We check, whether
both v, and vy are on the same side of the edge from v; to v; by comparing the indices of
the vertices. If i < k < j and i < k' < j is either both true or both false we have a good
happy diagonal, otherwise a bad happy diagonal. While traversing all edges we also maintain
a counter m, a start index, and an end index to keep track of the subpath R of consecutive
happy edges with the highest number of good happy diagonals. If at the end of the process
we have m > 0, then the minimum flip sequence has length [ + k& — 2m. The flip sequence
can be obtained by first removing all diagonals from the initial path except the ones in R
and then adding all missing diagonals from the target path.

However, if m = 0, then we need to check for further cases. We continue by checking,
whether the diagonals can be removed in such a way, that they permit a Type 3 flip, that is,
whether we have Case 2a. For this, again traverse the edges of the initial path. For every
diagonal (v;,v;) where w.l.o.g. i < j check the following: If v; is adjacent to a vertex vy
with ¢ < k < j in the initial path, then there has to be the edge (vi—1,vj+1) (indices taken
modulo n) in the target path and v;_; has to be adjacent to a vertex vy with j +1 < k'
or k¥ < i—1. Checking whether (v;,v;) is a diagonal can be done in constant time for
every pair of indices ¢ and j by checking if the indices are non-consecutive. Checking the
existence of the shifted diagonal in the target path can also be done in constant time by
accessing the entry T'[i + 1] and checking whether v;_; appears in the target path as one

2:9
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of the two neighbors of v; ;. The index k' happens to be the entry in T'[i + 1] that differs
from j — 1. We conclude that all the checks for a given diagonal can be executed in constant
time. Conversely, if v; is adjacent to a vertex vy with j < k or k < 4 in the initial path, then
there has to be the edge (vit1, vj,l) (indices taken modulo n) in the target path and v;41
has to be adjacent to a vertex vy with i +1 < k/ < j — 1. As before, all checks can be
done in constant time for a fixed given diagonal. If a pair of edges (v;,v;) and (vit1,v;-1)
(vi—1,vj41, respectively) that permits a Type 3 flip exists, remove all £ — 1 diagonals except
for the diagonal (v;,v;), then perform a Type 3 flip to flip in (vit1,vj-1) or (vi—1,vj41),
respectively. Finally continue by adding all the remaining [ — 1 diagonals to obtain a flip
sequence of length k41— 1,

If no pair of edges for a Type 3 flip exists, we next check, whether the edges can be
removed in a way such that they permit a common gap on the convex hull after removing all
diagonals, that is, whether Case 2b occurs. For this, create an additional array C|0, ..., n—1]
where the entry ¢ represents the convex hull edge (v;,v;11) (entries taken modulo n). Each
entry will be either marked or not. In the beginning, every entry is not marked. We first
traverse the initial path and mark all entries of the array where the corresponding convex
hull edge is part of the initial path. This can again be done by checking whether consecutive
vertices along the path are described by consecutive numbers modulo n and then marking the
entry of C' that corresponds to the lower of the two indices (with the exception of the edge
(Un—1,v0) where we mark C[n — 1]). We repeat the process for the target path. Afterwards,
we traverse the array C and check, if we can find an unmarked entry. An unmarked entry
corresponds to a convex hull edge e that does not lie in either, the initial path and the
target path. By Remark 4, e does not have to be flipped in, when removing and adding
the diagonals in the right order. This can be done by removing diagonals on both ends of a
path until the next edge to be flipped in would be e. After all k diagonals are removed, we
start flipping in the [ diagonals to obtain the target path. The constructed flip sequence has
length & + 1.

If none of the cases above occur the only remaining case is Case 2c¢. For a minimum flip
sequence just flip all diagonals to the convex hull from either side in both the initial and
target path to obtain two paths entirely on the convex hull. Then, the final flip sequence
consists of going from the initial path to the first path on the convex hull. Afterwards, we
perform a Type 2 flip to obtain the other path on the convex hull and then we reverse the
flip sequence from the target path to said convex hull path, to get to the target path. The
obtained flip sequence has length k + [ + 1. <

We note that to check every case we only traverse every path once and for every edge we
perform checks that can be done in constant time. This yields a linear time algorithm for
finding the minimum flip sequence between pairs of plane spanning paths in convex point
sets. In our description, the paths are traversed up to four times, once for initialization and
once for each case that checks the existence of certain structures. It would be possible to
perform the latter three checks within one iteration, but since it doesn’t affect the asymptotic
runtime we opted for the description that is easier to follow.
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6 Variants of the problem

In the following, we describe variants of our initial problem of finding the flip distance
between plane spanning paths in convex point sets.

First, we consider a variation of the problem in which we only allow flips for which the
removed edge does not cross the added edge, that is, the union of the two paths that are
part of the flip is crossing free. With our notion of flips, this means that we restrict the set
of flips to flips of Type 1 and Type 2. We call the length of a minimum flip sequence in this
setting the compatible flip distance. Restricting existing flips to the case where the initial
and resulting graphs are compatible has also been of interest for plane spanning trees [2, 19]
or crossing-free perfect matchings [16].

Afterwards, we consider a local variant of the problem where we require the removed

edge and the added edge to share a vertex. In this setting Type 1 flips still work as before.

Type 2 flips, however, can only be simulated by repeatedly adding an edge and removing an
edge that follows immediately afterwards. This can be interpreted as performing Type 2 flips

at a higher cost, which is the distance between the added and the removed edge in the path.

In this setting we call a valid flip a local flip and the length of a minimum flip sequence the
local flip distance. The setting, where the added and removed edge have to share a vertex is
known as edge rotation in the setting of plane spanning trees [2, 19].

As a last variant we consider paths in simple polygons. A path in a simple polygon can

have two types of edges. The first type are edges that are boundary edges of the polygon.

The second type lie in the interior of the polygon.

For all three variants we describe how to modify our algorithm to obtain the flip distance
in linear time. Especially for paths in simple polygons this might be surprising as we recall
that the flip distance problem for triangulations of simple polygons is NP-complete [4].

6.1 Compatible flip distance in convex point sets

We remark that for the compatible version of finding minimum flip sequences between plane
spanning paths in convex point sets the only difference to the original setting is that we do
not allow Type 3 flips. Therefore, the proof of Theorem 6 below is the same as for Theorems 3
and 5 except that we skip the original Case 2a. The notion of good and bad happy diagonals
stay the same as for the original setting.

» Theorem 6. Let P;, and Py, be two plane spanning paths for the same convex point set.

Let k and | denote the number of diagonals of P;, and Py, respectively. Then the compatible
flip distance between P, and Py, is described by the following cases.

Case 1: If good happy diagonals exist, let m > 1 be the mazimum number of good happy
diagonals in a subpath of consecutive happy edges. The compatible flip distance is then
k+1—2m.
Case 2: If no good happy diagonal exists, then we distinguish two cases
Case 2a: If the diagonals can be flipped to convex hull edges in both, the initial and
target path, such that the paths after flipping all diagonals coincide, the compatible flip
distance is k + 1.
Case 2b: Otherwise the compatible flip distance is k + 1+ 1.
All the checks for the case distinction above can be implemented to run in total time and
memory that is linear in the instance size.
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6.2 Local flip distance in convex point sets

If we restrict the flips to the local variant where the removed an added edge have to share
a vertex, we observe again that Type 3 flips can no longer occur. Further, re-aligning the
convex hull can no longer be done in a single flip if the two gaps are too far apart. We
partially resolve the second issue with the following lemma:

» Lemma 7. Any Type 2 flip between two paths in convex point sets can be simulated using
at most 2 local flips.

Vig Uiy Vig Uiy Vig Viy

(%A Uiy Vi, Uiy Vi, Uiy

Figure 9 Replacing a Type 2 flip with two local flips

Proof. Let P;, # P;, be two paths on a convex point set such that all their edges lie on
the convex hull. Let g; and go be their respective gaps with g1 # go.

If g1 and g5 share a vertex, then the flip from P;, to P, is a local flip.

Else, if g; and ¢g» do not share a vertex, let v;, and v;, be the vertices of g;. Further,
let v;, and v;, be the vertices of gy such that v;, occurs first when walking along P;;, in the
direction from v;, to v;,.

We can flip from P;,, to Py, via the following two flips: (1) Add (v;,, vs, ), remove (vi,, vs,)
and (2) add (v, ,vs,), remove (v;,,v;,). See Figure 9 for an illustration. <

We conclude that the proof of Theorem 8 below works similar to the proof of Theorem 3
and 5 for most of the cases. Again, the original Case 2a has no counterpart in this setting
as Type 3 flips are prohibited. Further, once we are forced to perform flips that realign
the convex hull, we need to distinguish further, whether this happens in one or two flips.
The checks that are needed for this case distinction can still be done in linear time and
space. When checking for mutual gaps in the convex hull we not only check whether the
two paths have a common gap, but also whether they have adjacent gaps. We revisit our
array C|0,...,n — 1], where entry i represents the edge (v;,v;4+1) (taken modulo n). Now
the entries of C are no longer marked or unmarked, but C' will contain integers from 0 to 3.
In the beginning, we set every value of C' to 0. We traverse the initial path. Every time we
encounter a convex hull edge (v;, v;+1) along the path, we increase entry ¢ in C' by 1. Then
we traverse the target path and increase entry i by 2, if we encounter the convex hull edge
(vi,vi41). Finally, we traverse C again. An entry 0 of C' will correspond to a common gap
in the convex hull. Values 1 and 2 that appear consecutively in some order correspond to
gaps that share a single vertex. We traverse the paths and the array a constant number of
times, performing constant time checks and updates along the way. This yields a linear time
algorithm to check all the conditions for the characterization in Theorem 8.

We derive the following characterization of minimum flip sequences:

» Theorem 8. Let P;, and Py, be two plane spanning paths for the same convex point set.
Let k and [ denote the number of diagonals of P;, and Py, respectively. Then the local flip
distance between Py, and Py, is described by the following cases.
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Case 1: If good happy diagonals exist, let m > 1 be the maximum number of good
happy diagonals in a subpath of consecutive happy edges. The local flip distance is then
k+1—2m.
Case 2: If no good happy diagonal exists, then we distinguish three cases
Case 2a: If the diagonals can be flipped to convex hull edges in both, the initial and
target path, such that the paths after flipping all diagonals coincide, the local flip distance
isk+1.
Case 2b: Otherwise if the diagonals can be removed such that the gaps in the convex
hull share a vertex, then the local flip distance is k + 1+ 1.
Case 2c: Otherwise, the local flip distance is k + 1+ 2.
All the checks for the case distinction above can be implemented to run in total time and
memory that is linear in the instance size.

While for specific pairs of paths the flip distance may increase by 1 when considering the
local flip distance, this does not have any impact on the diameter of the flip graph. The
reason is that pairs of paths for which the flip distance is maximized need to have many
diagonals and consequently many gaps in the convex hull. As soon as k + [ > n, the paths
share a gap in the convex hull by the pigeonhole principle and thus Cases 2b and 2c¢ of
Theorem 8 cannot occur if sufficiently many diagonals are present.

6.3 Flip distance in simple polygons

For a given simple polygon, we consider plane spanning paths in the visibility graph of the
polygon. The vertex set of the path is the set of vertices of the polygon and the set of edges
is described by (1) the edges on the boundary of the polygon, in the following called boundary
edges and (2) interior edges between two non-consecutive vertices of the polygon such that
these straight line connection between the two vertices is entirely contained in the interior of
the polygon. We observe that interior edges cut the polygon into two parts such that the
two parts cannot interact as long as the interior edge exists.

In analogy to the preliminaries in Section 3 we observe the following behavior of the
different types of flips. See Figure 10 for an illustration.

(a) (b)
Figure 10 Flips between paths in simple polygons that change interior edges:
(a) The underlying simple polygon
(b) A Type 1 flip that adds a boundary edge (fat) and removes an interior edge (dashed)
A Type 1 flip that adds an interior edge (fat) and removes a boundary edge (dashed)
(d) A Type 3 flip that exchanges two interior edges (fat and dashed)

A Type 1 flip either adds a boundary edge and removes and interior edge or adds an
interior edge and removes a boundary edge. Further, if there exist interior edges, we can
always perform a Type 1 flip that reduces the number of interior edges.
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A Type 2 flip can be performed if and only if all the edges of the path are boundary
edges. A Type 2 flip exchanges two paths that are entirely contained in the boundary for
one another.

For a Type 3 flip to be possible, for each path there has to be exactly one interior edge
and all the other edges have to be on the boundary. In the setting of simple polygons we
additionally require that the straight line that connects the two endpoints of a path lies
entirely inside the polygon.

Next, we take a look at happy interior edges, that is, interior edges that lie in both
the initial path and the target path. We observe the following analogy to Lemma 2. See
Figure 11 for an illustration.

Good happy interior edges are interior edges that split the polygon into two parts such
that the subpaths emanating from one vertex of the interior edge emanate into the same
part of the polygon in both the initial path and the target path. There exist flip sequences
from the initial path to the target paths such that one subpath of consecutive happy
edges containing good happy interior edges is not flipped.

Bad happy interior edges are interior edges for which their emanating subpaths at each
vertex emanate to different sides of the polygon. Every flip sequence from the initial path
to the target path has to remove all bad happy interior edges.

W

Good happy interior edge Bad happy interior edge

Figure 11 Left: Good happy interior edge with subpaths emanating to the same side
Right: Bad happy interior edge with subpaths emanating to different sides

Finally, we observe as before that the information about interior edges and the way how
subpaths emanate from them is sufficient to reconstruct the entire path. This shifts the
problem of flipping paths to the problem of positioning diagonals correctly. We have obtained
all the necessary ingredients so that we can follow the lines of the proof of Theorem 3 and
can thus conclude:

» Theorem 9. Let P, and P, be two plane spanning paths in the same simple polygon.
Let k and | denote the number of interior edges of P;, and Py, respectively. Then the flip
distance between Py, and Py, is described by the following cases.
Case 1: If good happy interior edges exist, let m > 1 be the maximum number of good
happy interior edges in a subpath of consecutive happy edges. Then the flip distance is
k+1—2m.
Case 2: If no good happy interior edges exists, then we distinguish three cases
Case 2a: If there exists a pair of interior edges dy € Py, do € Py that can be
exchanged for one another by a direct Type 3 flip, then the flip distance is k41— 1.
Case 2b: If no direct Type 3 flip can be performed eventually and if the interior
edges can be flipped to boundary edges in both, the initial and target path, such that the
paths after flipping all interior edges coincide, the flip distance is k + 1.
Case 2c: Otherwise the flip distance is k+1+ 1.
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All the checks for the case distinction above can be implemented to run in total time and
memory that is linear in the instance size.

For the runtime and memory requirements we point out that the proof of Theorem 5
never uses the actual geometry of a convex point set as an argument, but only the order of
the vertices when traversing the boundary. Thus, we can replace “convex hull” in the proof
of Theorem 5 by “boundary of the simple polygon”, and, therefore all the checks carry over
to simple polygons where we can still get an order of the vertices by tracing its boundary.

From Theorem 9 we can also bound the number of flips that it takes to go from one path
in a simple polygon to any other.

» Corollary 10. The diameter of the flip graph of paths in a simple polygon of size n is
<2n—6 forn >4 and <2n—>5 forn € {3,4}.

Proof. Any path in a simple polygon has at most n — 3 interior edges. With the notation of
Theorem 9, k + [ < 2n — 6. Additionally, we observe that for every interior edge, we lose one
boundary edge and get an additional gap in the boundary. So, if Kk +1 > n — 1, there is a
total of > n+ 1 gaps in P;,, and P.,,. Then, by the pigeonhole principle, the two paths have
to share a gap in the boundary, and Case 2¢ of Theorem 9 cannot occur. If the polygon has
3 or 4 vertices there could exist two paths that together cover the entire boundary of the
polygon. For n > 4 the 2n — 6 > n — 1 and for any choice of k and [ we get a flip distance of
at most 2n — 6. |

The upper bound of Corollary 10 is attained for convex polygons. In general, the bound
is not tight. The interested reader may check that the polygon in Figure 12 does not admit
paths with more than one diagonal. Therefore, by Theorem 9, any path in this polygon can
be flipped into any other path in at most 3 flips. Further, the construction of the polygon
can be generalized to contain an arbitrary number of vertices.

Figure 12 Polygon that only allows paths with at most one interior edge and where the flip graph
has diameter 3.
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7| Conclusion

We disproved the happy edge property for plane spanning paths on convex point sets. At
the same time, we provided a linear time algorithm to compute the flip distance between
two given plane spanning paths. This contradicts the assumption that the absence of the
happy edge property makes finding minimum flip sequences hard to solve. We are not aware
of any problem for which the opposite direction fails, that is, a reconfiguration problem for
which the happy edge property is true, but it is hard to compute the flip distance.

The central questions about the flip graph of paths in point sets in general position still
remain open: Is the flip graph connected? And if yes, how many flips do we need in the
worst case? A related question is, how hard it is to find a shortest flip sequence between two
spanning paths (or to decide that there exists none)?

We have also seen that we can determine the flip distance between paths in simple
polygons in linear time. A natural way to generalize this would be to consider questions
about paths in polygons with holes.
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